
 

 

UNIT I 

Object Oriented Methodologies: Software System Life Cycle – Traditional cycle models – 

Object Oriented approach – Rambaugh et al Object Modeling Technique – Booch Methodology 

– Jacobsonet al methodology –Rational Unified Process (RUP) – Unified Modeling Language 

(UML) – UML Models.  

 

1.1 THE SYSTEM LIFE CYCLE  

Framework is very important for the development of a software system. An agreed framework 

for development brings many advantages:  

1. A framework provides an overall picture of the development process; this picture is not 

cluttered by detail of what goes on at any stage in the process, but is useful as a high-

level view of the major areas of activity, milestones and project deliverables.  

2. A framework provides a 

basis for development and 

ensures a certain level of 

consistency in how the work 

is approached.  

3. Consistency approach is 

very important when large of 

developers are involved in 

the project after it has 

started.  

4. A framework plays a 

significant role in ensuring 

quality, both of the 

development process and of 

the final system, by 

providing a structure for 

project management- 

planning, monitoring and 

controlling the development 

project.  

In software system development, a 

framework has traditionally been 

known as a system life cycle 

model.  

The stages that have been referred for life cycle as requirements, analysis, design, 

implementation and installation. Each stage is concerned with particular issues and produces a 

set of outputs or deliverables shown in the below table  

 

 

 

 

 



 

 

 

 

 

1.2 TRADITIONAL LIFE CYCLE: The most important traditional life cycle models are:  

1.2.1 Waterfall Model :  

1. This is the early life cycle model; stages of development are straightforward sequence.  

2. It describes a development method that is linear and sequence  

3. It has distinct goals for each phase of development.  

4. Once a phase of development is completed, the development proceeds to the next phase 

and is turning back.  

Requirements: List of requirements for 

development.  

Design: Process of problem solving and 

planning for a software solution. 

Implementation: Coding  

Testing: Make sure that the complete 

system meets software requirements.  

Maintenance: modification of the 

product after deliver to correct faults. 

1.2.2 V-model:  

1. Stages are visualized in the form of the letter 'V'.  

2. It emphasizes how later stages of development are related to earlier stages; for example, 

how testing should be derived from the activities that are carried out during requirements 

and analysis.  

1.2.3 Spiral.  

1. It incorporates iteration of life cycle stages and focuses on identifying and addressing the 

risks involved in development.  

2. At each iteration around the cycle, the products are extensions of an earlier stage.  

1.2.4 Prototyping.  

1. In the prototyping life cycle, implementation takes place early in the development 

process.  

2. The working model produced is subsequently refined and enhanced during a series of 

iterations until it is acceptable to the client.  

 

1.2.5 Iterative Development: 

1. This approach is closely related to the spiral model and to prototyping.  

2. It covering the complete functionality of the system is produced and then refined as 

development progresses.  

1.2.6 Incremental development.  

1. In this life cycle model the system is partitioned according to areas of functionality.  

2. Each major functional area is developed and delivered independently to the client.  

 

1.3 THE OBJECT-ORIENTED APPROACH  



 

One of the differences that is immediately obvious between traditional life cycle models and the 

object-oriented approach is the way that the various stages are named.  

Traditional Life Cycle model  Object Oriented approach  

Traditional model the name, such as 

‘analysis’ or ‘implementation’, 

reflects the activities that are 

intended to be carried out in that 

stage.  

A clear distinction is made between the activities and 

the stages (generally referred to as phases) of 

development.  

Phases are inception, elaboration, construction and 

transition. indicating the state of the system  

 

1.3.1 Phases  
o Inception:  

It covers the initial work required to set up and agree terms for the project. It includes 

establishing the business case for the project, incorporating basic risk assessment and the scope 

of the system that is to be developed.  

o Elaboration:  

 

It deals with putting the basic architecture of the system in place and agreeing a plan for 

construction. During this phase a design is produced that shows that the system can be developed 

within the agreed constraints of time and cost.  

o Construction:  

 

It involves a series of iterations covering the bulk of the work on building the system; it ends 

with the beta release of the system, which means that it still has to undergo rigorous testing. 

 

o Transition  

It covers the processes involved in transferring the system to the clients and users. This includes 

sorting out errors and problems that have arisen during the development process.  

In object-orientation, activities such as analysis or design are referred to as workflows. The 

below figure shows the different workflows that typically take place during a system 

development project.  

 

 
 

It is recognized that a workflow may be carried out at more than one development phase and that 

developers may well engage in the whole range of workflows during every phase of building a 

system.  

During the construction phase the main activities will be implementation and testing, but if bugs 

are found there will have to be some requirements and analysis as well.  



 

The OO approach to development views the relationships between workflows and phases of 

development rather like the spider’s web in the below figure, where any phase may involve all 

workflows, and a workflow may be carried out during any phase.  

 
 

The object-oriented approach also recognizes fully the reality of iterative development. Activities 

at any phase do not take place in a neatly ordered fashion.  

A developer may have to revisit a range of workflows several times during one phase of 

development, before it is possible to move on to the next phase.  

The below figure illustrates the phases of the object-oriented life cycle with iteration of 

workflows at each phase.  

In the diagram that iterations are most likely during construction, but can occur during any phase 

of development. Each ellipse represents a range of workflows.  

 

 
 

 

In addition to the emphasis on iterative development, the object-oriented approach also differs 

from traditional life cycle models in that it stresses the importance of a seamless development 

process.  

This means that the separate phases are less distinct from each other than in a traditional system 

life cycle; it is not considered essential, nor is it often easy, to be able to say precisely when one 

phase is completed and another begins.  

Although the traditional system life cycle was concerned about issues such as quality, ease of 

modification and potential reuse, it tended to regard them as add-ons to the core development 

process.  



 

In the object-oriented approach such issues are regarded as central, and developers are 

encouraged to bear them in mind throughout the time they are working on the system.  

1.3.1 RAMBAUGH ET AL OBJECT MODELING TECHNIQUE Object modelling 

techniques (OMT) presented by Jim Rambaugh describes a method for the analysis, design and 

implementation of a system using OOT. It is a fast, intuitive approach for identifying and 

modelling all the object making up a system. This model lets you specify detailed state 

transitions their descriptions within in a system. It consists of 4 phases:  

1. Analysis: The results are objects and dynamic and functional models.  

2. System Design: The results are structure of a basic architecture of the system along with the 

high –level strategy decisions.  

3. Object Design: This phase produce a design document, consisting of a detailed objects static, 

dynamic and functional models.  

4. Implementation: This activity produces reusable, extendible and robust code.  

OMT separates modeling into three different parts:  

1. Object model: presented by the object model and data dictionary.  

2. Dynamic model: presented by the state diagrams and event flow diagrams.  

3. Functional model: presented by data flow and constraints.  

1.3.1 THE OBJECT MODEL It describes structure of object in the system; their identity and 

relationship to other objects, attributes and operations. The figure below shows object model 

with graphical representation 

 

 
1.3.2 THE DYNAMIC MODEL It provides detailed and comprehensive dynamic model, in 

addition to letting you depict states, transitions, events and actions. The below figure shows state 

transition is a network of states and events. 



 

 
1.3.3 THE FUNCTIONAL MODEL It shows the flow of data between different processes in a 

business. The OMT DFD provides a simple and intuitive method for describing business 

processes without focusing on the details of computer systems. DFD use 4 primary symbols:  

1. The process is any function being performed; example verifying Password/PIN in ATM.  

2. The data flow shows the direction of data element movement; example PIN code.  

3. The data store is a location where the data are stored; example account data store in ATM  

4. The external entity is a source/ destination of a data element; example ATM card reader  

 

1.4 THE RATIONAL UNIFIED PROCESS (RUP)  
A life cycle provides a high-level representation of the stages that a development project must go 

through to produce a successful system.  

A development method, on the other hand, is much more prescriptive, often setting down in 

detail the tasks, responsibilities, processes, prerequisites, deliverables and milestones for each 

stage of the project.  

Nowadays, almost all object-oriented projects use the Unified Modeling Language as the 

principal tool in their development process.  

 

Use of the UML has been approved by the Object Management Group (OMG), which controls 

issues of standardization in this area. This has resulted in conformity between projects in terms 

of notation and techniques.  

The creators of the UML have proposed a generic object-oriented development The Unified 

Software Development Process (Jacobson et al., 1999) and this generic method has been adopted 

and marketed by the Rational Corporation under the name of the Rational Unified Process 

(RUP).  

RUP is based on the following six 'Best Practices'  

1 Develop software iteratively  

2 Manage requirements  

3 Use component-based architectures  

4 Visually model software  

5 Verify software quality  

6 Control changes to software.  

 



 

1. Develop software iteratively  

 RUP follows the phases of the generic object-oriented life cycle (inception, elaboration, 

construction and transition). It is built on the central concept of iterative development and 

each of its phases defines a series of activities that may be performed once or a number of 

times.  

 Each iteration is defined as a complete development loop resulting in the release of an 

executable product that is a subset of the final system.  

 In this way RUP supports incremental development- the frequent release of small packages of 

software that gradually build up to become the final system.  

 Iteration and incremental development encourage involvement and feedback from clients and 

users; they make it easier to cope with changes, and reduce the risk factors associated with 

any development project.  

2. Manage requirements  

 RUP offers sound support for eliciting, organizing and recording requirements. Precise 

documentation of requirements facilitates traceability through the development process, which 

enhances the quality of the final system.  

 The emphasis on the activities that take place early on in the life cycle provides a sound 

foundation for the later stages and results in systems that are robust, reliable and meet the 

needs of their users.  

 

 

 

3. Use component-based architectures  

 RUP prescribes the early identification and development of a system structure that is at the 

same time robust enough to ensure system reliability, and flexible enough to accommodate 

changes. This is achieved through the use of components subsystems that each have a single, 

well-defined function.  

 RUP describes how to construct an architecture combining both new and previously existing 

components, thus encouraging the reuse of software as part of the development process.  

 

4. Visually model software  

 RUP is based around the Unified Modelling Language (UML) as a vehicle for development. 

UML has become an industry standard, and incorporates a wide range of techniques and 

tools to support developers. The techniques offered by UML bring with them all the 

advantages of visual modelling.  

 For example, UML diagrams facilitate communication between developers and users and 

between members of the development team, they offer a number of different views of the 

system which combine to give a complete picture, they help developers to decompose the 

problem into smaller, more manageable chunks, and they provide a means of abstraction, 

concentrating on important information while hiding details that are currently irrelevant.  

 

5. Verify software quality  

 RUP provides the techniques to support quality assessment of functionality, reliability and 

performance throughout the development process.  



 

 The RUP approach to quality is based on objective measures and criteria for success; it 

involves all members of the development team and applies to all the activities that are carried 

out as part of the system development.  

 

6. Control changes to software  

 Changes are the norm in a software development project, so an effective development 

process must be able to monitor and control them.  

 RUP provides tools to do this, and also supports the work of developers by offering 

protection in one area of development from changes that occur in another.  

 

1.5 UNIFIED MODELLING LANGUAGE (UML)  

The Unified Modelling Language, or UML, is a set of diagrammatic techniques, which are 

specifically tailored for OOD, and which have become an industry standard for modelling object-

oriented systems.  

 

1.5.1 Modelling:  
Software developers use specialized diagrams to model the system that they are working 

on throughout the development process. Each model produced represents part of the system or 

some aspect of it, such as the structure of the stored data, or the way that operations are carried 

out. Each model provides a view of the system, but not the whole picture.  

 

1.5.2. Abstraction:  
The characteristic of a model to provide some but not all the information about the person 

or thing being modelled is known as abstraction. Each of the modelling techniques in the 

Unified Modelling Language provides a particular view of the system as it develops; each UML 

model is an abstraction of the complete system. Abstraction, concentrates on only those aspects 

of the system that are currently of interest, and putting other details to the side for the time being.  

 

1.5.3. Decomposition:  

This is the breaking down of a large, complex problem or system into successively 

smaller parts, until each part is a 'brain-size' chunk and can be worked on as an independent unit. 

Traditionally software systems used to be decomposed according to their functions - the tasks 

that the system had to carry out. In OO, systems are decomposed according to the data that they 

have to store, access and manipulate. 

 

1.6 UML MODELS  
The UML is not a development 

method since it does not prescribe what 

developers should do, it is a diagrammatic 

language or notation, providing a set of 

diagramming techniques that model the 

system from different points of view.  

The below table shows the principal 

UML models with a brief description of 



 

what each can tell us about the developing system.  

The 4 + 1 view. The authors of UML, Booch et al., (1999), suggest the architecture of a system 

from five different perspectives or views:  

 The use case view  

 The design view  

 The process view  

 The implementation view  

 The deployment view.  

This is known as the 4 + 1 view (rather than the 5 views) because of the special role played 

by the use case view.  

 

The Use Case view:  
it specifies what the user wants the system to do; the other 4 views describe how to 

achieve this.  

The use case view describes the external behavior of the system and is captured in the use 

case model  

 

The Design view:  
It sometimes called as logical view. Describes the logical structures required to provide 

the functionality specified in the use case view.  

The design view describes the classes (including attributes and operations) of the system 

and their interactions.  

 

The Process view:  
It is concerned with describing concurrency in the system.  

Sequence diagram can be used to achieve it.  

The Implementation view:  

It describes the physical software components of the system, such as executable files, 

class libraries and databases.  

The view of the system can be modeled using component diagram  

 

The Deployment view:  
This view describes the hardware components of the system such as PCs, mainframes, 

printers and the way they are connected.  

This view can also be used to show where software components are physically installed 

on the hardware elements.  

 



 
 

 

UNIT – II 

UML Diagrams: Use case diagram – UML class diagram – interaction diagram – state diagram 

– activity diagram – Requirements for ATM banking system – case study 

 UML DIAGRAMS: The UML is a language for specifying, constructing, visualizing and 

documenting the software system and its components. The UML is a graphical language with 

sets of rules and semantics, in a form known as Object constraint language (OCL). The primary 

goals in the design of the UML were as follows:  

1. Provide users a ready-to-use, expensive visual modeling language so they can develop 

and exchange meaningful models.  

2. Provide extensibility and specialization mechanisms to extend the core concepts.  

3. Be independent of particular programming languages and development processes.  

4. Provide a formal basis for understanding the modeling language.  

5. Encourage the growth of the OO tools market.  

6. Support higher-level development concepts.  

7. Integrate best practices and methodologies.  

The UML defines 6 graphical diagrams:  

1. Use-case diagram  

2. Class Diagram  

3. Interaction diagram  

a. Sequence diagram  

b. Collaboration diagram  

4. State chart diagram  

5. Activity diagram  

6. Implementation diagram  

a. Component diagram  

b. Deployment diagram  

USECASE DIAGRAM:  

Use case Diagram concept was introduced by 

Ivar Jacobson in the OOSE method. This corresponds 

to a sequence of transactions, in which each 

transaction is invoked from outside the system 

(actors) and engages internal objects to act with one 

another. 

This is a graph of actors, a set of use cases 

enclosed by a system boundary, communication 

association between the actors and the use cases and 



 
 

generalization among the use cases. 

 

IDENTIFYING USE CASES FROM THE ACTORS One is to identify the actors, the users of 

the system, and for each one, to establish how they use the system, what they use it to achieve. 

Scenarios belonging to the same use case have a common goal each scenario in the group 

describes a different sequence of events involved in achieving (or failing to achieve) the use case 

goal. 

 
The UML Symbols for use case diagram 

These relationships are shown in a use case diagram:  

1. Communication: Connecting actor symbol to the use case symbol with a solid path.  

2. Uses: relationship between use cases is shown by a generalization arrow from the use case.  

3. Extends: Used when one use case that is similar to another use case but does a bit more. It is 

like a subclass.  

 

UML CLASS DIAGRAM:  

The UML Class diagram, also referred to as object modeling, is the main static analysis 

diagram. This shows the static structure of the model.  



 
 

It is a collection of static modeling elements, such as classes and their relationships, 

connected as graph to each other and to their contents. It does not show temporal information, 

which is required in dynamic modeling.  

The main task of object modeling is to graphically show what each object will do in the 

problem domain, describe the structure (such as class hierarchy) and relationship among the 

objects (such as associations) by visual notations, and determine what behavior fall within and 

outside the problem domain.  

CLASS NOTATION: STATIC STRUCTURE  

A class is drawn by a rectangle with three components separated by horizontal lines.  

 The top name compartment holds the class name  

 The general properties of the class, 

such as attributes are in the middle 

component.  

 The bottom components contain the 

list of operations.  

 

A separator line is not drawn for a missing 

compartment if a component is suppressed; 

no inference can be drawn about the 

presence or absence of elements in it. 

 

 
OBJECT DIAGRAM  

A static object diagram is an instance of a class diagram. It shows the detailed state of the 

system at a point in time. Class diagram contains object, so a class diagram with object and no 

classes is an object diagram  

CLASS INTERFACE NOTATION  

This is used to describe the externally visible behavior of a class; example, an operation 

with public visibility. 

 
BINARY ASSOCIATION NOTATION  

This is drawn as a solid path connecting two paths, or both ends may be connected to the 

same class. An association may have an association rule. 



 
 

 
5. 0 Association Notation 

Association name may have an optional black triangle in it, the point of the triangle indicating 

the direction in which to read the name, where it is connected to a class is called association 

role.  

ASSOCIATION ROLE  

The technical term for it is binary association-is drawn as a solid line connecting two 

class symbols. The UML uses the term association navigation or navigability to specify a role 

affiliated with each end of an association relationship. 

In fig 5.0 the association is navigable in only one direction, from the Bank Account to 

Person, but not the. Reverse  

QUALIFIER  

Qualifier is an association attribute. For example, a person 

object may be associate to a Bank object. An attribute of this 

association is account#. The account# is the qualifier of this 

association. 

A qualifier is shown as small rectangle attached to end of an 

association path, between the final path segment and the symbol of 

the class to which it connects.  

MULTIPLICITY  

It specifies the range of allowable associated class. It is 

given for roles within association, parts with compositions, 

repetitions and other purposes. It shows as a text string comprising a 

period-separated sequence of integer intervals, where an interval 

represents a range of integers in the figure above. Example Lower 

bound…. Upper bound 0…..1 0..*  

OR ASSOCIATION  

It indicates the situation in which only one 

of several potential associations may be 

instantiated at one time for any single object. This 

shown as dashed line connecting two or more 



 
 

associations, all of which have a class common, with the constraint string {or} labeling dashed 

line.  

 

ASSOCIATION CLASS 

 It is also has class properties. An 

association class is shown as a class symbol 

by a dashed line to an association path. 

If an association class has attributes 

but no operation or other association, then 

the name may be displayed on the 

association path and omitted from the 

association class to emphasize its “association nature”. If it has operations and attributes, then 

the name may be omitted from the path and placed in the class rectangle to emphasize its “class 

nature”. 

N-ARY ASSOCIATION  

This is an 

association among more 

than two classes. N-ary is 

difficult to understand, it is 

better to convert it into 

binary association. It is 

shown as a large diamond 

with a path from diamond to 

each participant class. 

Multiplicity may be 

indication; however, 

qualifiers and aggregations 

are not permitted. In the 

below figure diamond by a 

dashed line, indicating N-ary association that has attributes, operations and associations. 

 

AGGREGATIONS AND COMPOSITION An aggregation is in the form of associations. A 

hollow diamond is attached at the end of the path indicates aggregation. Diamond may not be 

attached both ends. 

Composition is also known as a part-of, is a form of aggregation with strong ownership to 

represent the component of a complex object. Composition also referred as a part-whole 

relationship 



 
 

 

GENERALIZATION 

Generalization is the relationship between a more general class and more specific class. It is 

displayed with a directed line with closed, hollow arrowhead at the super class end. 

 

 

The UML allows discriminator label to be attached to a generalization of the superclass. 

In the above example Ellipse (…) indicates the generalization is incomplete and more subclass 

exist. The constructor complete indicates that generalization is complete and no more subclasses 

are needed.  

 

INTERACTION DIAGRAM Interaction diagram describes how group of objects collaborate to 

get the job done. It captures the behavior of a single use case, showing the pattern of interaction 

among objects. There are two kinds of interaction models:  

1. Sequence diagram  

2. Collaboration diagram  

 

UML SEQUENCE DIAGRAM Sequence diagram describes the behavior of the system 

viewing the interaction between the system and its environment. It shows an interaction arranged 

in a time sequence. It has two dimensions:  

1. Vertical dimension represents time – called object lifeline object existence during 

interactions).  

2. Horizontal dimension represents different objects.  

The sequence of execution in an object-oriented program is complicated; it is hard to follow the 

flow of control as it is passed backwards and forwards between objects. 

This demonstrates the usefulness of the sequence diagram as a map to guide us through the code. 

Sequence diagrams provide an overview of the inter-object messaging sequence; this is useful 

for software designers and for programmers, both when they are writing the code and when they 

are maintaining it. 



 
 

 
Each message is represented by an arrow between the lifelines of two objects. Each message is 

labeled with the message name. The sequence diagram is very simple and has immediate visual 

appeal- this is its great strength. 

UML COLLABORATION DIAGRAM It represents a collaboration, which is a set of objects 

related in a particular context, and interaction, which is a set of objects related in a particular 

context, and interaction, 

 

which is a set of messages exchanged 

among the objects within the collaboration 

to achieve a desired outcome. In this 

diagram, the sequence is indicated by 

numbering the messages, makes it more 

difficult to see the sequence than drawing 

the lines on the page. This layout uses to 

indicate how objects are statistically 

connected. It is more compressed. 

 

An interaction diagram is used to examine 

the behavior of objects within a single use 

case. It is good at showing collaboration 

among the objects but not so good at precise 

definition of the behavior. The interaction 

diagram loses its clarity with more complex 

conditional behavior. It is simplicity.  



 
 

 

 

STATE DIAGRAM It shows the sequence 

of states that an object goes through during 

its life in response to outside stimuli and 

messages. The state is set of values 

describes an object in a specific point in 

time and is represented at state symbol and 

transitions are represented by arrows 

connecting the state symbols. 

It may contain sub diagrams. It 

represents the state of the method execution 

(the state object executes the method), and 

activities in the diagram represents the activities of the object that performs the method. 

 
The transitions can be simple or complex. 

Events are processed one at a time. An event that 

triggers no transitions is simply ignored. A complex 

transition may have multiple source and target states. 

It represents synchronization or splitting of control 

into concurrent threads. A complex transition is 

shown as a short heavy bar. 

 



 
 

A bar may have one or more solid arrows from states to the bar (these are source states); It may 

also have one or more solid arrows from the bar to the states (these are destination states). State 

diagrams are useful, when you have a class that is very dynamic. It emphasizes the use of events 

and states to determine the overall activity of the system. 

 

ACTIVITY DIAGRAM  

An activity diagram, all the states are 

activities (i.e. a state of doing something) and 

the transitions between them are triggered by 

the completion of the activity, rather than by an 

external event. Activity diagrams show the 

internal flow of control in a process. Symbols 

used in activity diagram 

Unlike state diagram that focus on the 

event occurring to a single object as it responds 

to messages, an activity diagram can be used to 

model an entire business process; used to 

provide view of flow and what is going on 

inside the use case or among several classes 

It is similar to state chart where a token 

represents operations. An operation appears 

within the activity diagram indicates the 

execution of the operation. An outgoing solid 

arrow attached to an activity symbol 

indicates a transition triggered by the 

completion of the activity. The name of this 

implicit event need not be written, but the 

conditions that depend on the result of the 

activity or values may be included. If 

conditions are not disjoint, then the branch is 

nondeterministic. The concurrent control is 

represented by multiple arrows leaving a 

synchronization bar, which is represented by 

a short thick bar with incoming and outgoing 

bars. This diagram mostly to show internal 

state of an object, but external events may 

appear in them. An external event may 



 
 

appears when the object is in a “wait state”(no internal activity by the object is waiting for 

external event to occur ) there are 2 states: wait and activity state .A wait is a “normal state” 

The above diagram provided for a decision is the 

traditional diamond shape, with one or more 

incoming arrows or two or more outgoing arrows, 

each labeled by a distinct guard condition. This 

diagram may be organized into swimlanes, each 

separated from neighboring 

swimlanes by vertical solid lines 

on both sides.  

Swimlanes  

Represents responsibility 

for part of the overall activity 

and may be implemented by one 

or more objects. The relative 

ordering of the swimlanes has no 

semantic significances but might 

indicate some affinity. Each 

action is assigned to one 

swimlane. 



 

 

 

UNIT – III 

Object Oriented Analysis : Use case driven Object analysis – approaches for identifying classes – 

identifying objects, relationships attributes, methods for ATM banking system –Object oriented 

design process – design axioms.  

 

OBJECT ORIENTED ANALYSIS 

 Analysis is the process of extracting the needs of a system and what the system must do to 

satisfy the users' requirement. The goal of object oriented analysis is to understand the domain of tile 

problem and the system's responsibilities by understanding how the users use or will use the system. 

The main objective of the analysis is to capture a complete, unambiguous, and consistent picture of 

the requirements of the system and what the system must do to satisfy the users' requirements and 

needs. 

 Business Object Analysis: Understanding the Business Layer 

 Business object analysis is a process of understanding the system's requirements and 

establishing the goals of an application. To understand the users' requirements, we need to find out 

how they "use" the system. This can be accomplishing by developing use cases. Defer unimportant 

details until later. State what must be done, not how it should be done. This, of course, is easier said 

than done. Yet another tool that can be very useful for understanding users' requirements is preparing 

a prototype of the user interface.  

USE CASE DRIVEN OBJECT ORIENTED ANALYSIS  

The object-oriented analysis (OOA) phase of the unified approach uses actors and use cases 

to describe the system from the users' perspective. The actors are external factors that interact with 

the system; use cases are scenarios that describe how actors use the system. The use cases identified 

here will be involved throughout the development process. The OOA process consists of the 

following steps:  

1. Identify the actors: Who is using the system? Or, in the case of a new system, who will be 

using the system?  

2. Develop a simple business process model using UML activity diagram.  

3. Develop the use case: What are the users doing with the system? Or, in case of the new 

system, what will users be doing with the system? .Use cases provide us with comprehensive 

documentation of the system under study.  

4. Prepare interaction diagrams: Determine the sequence. .Develop collaboration diagrams.  

5. Classification-develop a static UML class diagram: Identify classes. . Identify relationships. 

Identify attributes. Identify methods.  

6. Iterate and refine: If needed, repeat the preceding steps.  

 



 

 

 

BUSINESS PROCESS MODELING  

Business process modeling can be very time consuming, so the main idea should be to get a 

basic model without spending too much time on the process.  

The advantage of developing a business process model is that it makes you more familiar 

with the system and therefore the user requirements and also aids in developing use cases.  

For example, let us define the steps or activities involved in using your school library. These 

activities can be represented with an activity diagram.  

Developing an activity diagram of the business process can give us better understandings of 

what sort of activities are performed in a library by a library member. 

 

USE-

CASEMODEL  

Use cases 

are scenarios for 



 

 

understanding system requirements. A use-case model can be instrumental in project development, 

planning, and documentation of systems requirements.  

A use case is an interaction between users and a system; it captures the goal of the users and 

the responsibility of the system to its users  

The use-case model describes the uses of the system and shows the courses of events that can 

be performed. A use-case model also can discover classes and the relationships among subsystems of 

the systems. Each use or scenario represents what the user wants to do.  

Each use case must have a name and short textual description, no more than a few 

paragraphs.  

Since the use-case model provides an external view of a system or application, it is directed 

primarily toward the users or the "actors" of the systems, not its implementers As you can see, these 

are uses of external views of the library system by an actor such as a member, circulation clerk, or 

supplier instead of a developer of the library system. The simpler the use-case model, the more 

effective it will be. It is not wise to capture all the details right at the start. 

The UML class diagram, also called an object model, represents the static relationships 

between objects, inheritance, association, and the like. The object model represents an internal view 

of the system, as opposed to the use-case model, which represents the external view of the system.  

The use-case diagram depicts the extends and uses relationships where the interlibrary loan 

is a special case of checking out books. Entering into the system is common to get an interlibrary 

loan, borrow books, and return books use cases, so it is being "used" by all these use cases. 

Transaction: A transaction is an atomic set of activities that are performed either fully or not at all. 

A transaction is triggered by a stimulus from an actor to the system or by a point in time being 

reached in the system. 

 

IDENTIFYING CLASSES The four alternative approaches for identifying classes are :  

1. noun phrase approach  

2. common class patterns approach  

3. use case driven, sequence/collaboration modeling approach  

4. Classes, Responsibilities, and Collaborators (CRC) approach  

The first two approaches have been included to increase your understanding of the subject; the 

unified approach uses the use-case driven approach for identifying classes and understanding the 

behavior of objects. However, you always can combine these approaches to identify classes for a 

given problem. Another approach that can be used for identifying classes is Classes, Responsibilities, 

and Collaborators (CRC) developed by Cunningham, Wilkerson, and Beck. Classes, Responsibilities, 

and Collaborators, more technique than method, is used for identifying classes responsibilities and 

therefore their attributes and methods. 

 

Noun Phrase Approach  



 

 

The noun phrase approach was proposed by Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren 

Wiener. In this method, reading through the requirements or use cases and looking for noun phrases. 

Nouns in the textual description are considered to be classes and verbs.  

 
Using the noun phrase strategy, candidate classes can be divided into three categories:  

1. Relevant Classes,  

2. Fuzzy Area or Fuzzy Classes and  

3. Irrelevant Classes. Database standards and even fourth-generation languages."  

 

Selecting Classes from the Relevant and Fuzzy Categories  

The following guidelines help in selecting candidate classes from the relevant and fuzzy 

categories of classes in the problem domain.  

1. Redundant classes. Do not keep two classes that express the same information. If more than 

one word is being used to describe the same idea, select the one that is the most meaningful 

in the context of the system. This is part of building a common vocabulary for the system as a 

whole. Choose your vocabulary carefully; use the word that is being used by the user of the 

system.  

2. Adjectives classes. Adjectives can be used in many ways. An adjective can suggest a 

different kind of object, different use of the same object, or it could be utterly irrelevant. If 

the use of the adjective signals that the behavior of the object is different, and then makes a 

new class”. For example, Adult Members behave differently than Youth Members; so, the 

two should be classified as different classes.  

3. Attribute classes. Tentative objects that are used only as values should be defined or restated 

as attributes and not as a class. For example, Client Status and Demographic of Client are not 

classes but attributes of the Client class.  

4. Irrelevant classes. Each class must have a purpose and every class should be clearly defined 

and necessary. You must formulate a statement of purpose for each candidate class. If you 

cannot come up with a statement of purpose, simply eliminate the candidate class.  

The process of eliminating the redundant classes and refining the remaining classes is not 

sequential. The process of identifying relevant classes and eliminating irrelevant classes is an 

incremental process. Each iteration often uncovers some classes that have been overlooked.  

 

The ViaNet Bank ATM System: Identifying Classes by Using Noun Phrase Approach  



 

 

To better understand the noun phrase method, we will go through a case and apply the noun 

phrase strategy for identifying the classes. We must start by reading the use cases and applying the 

principles discussed in this chapter for identifying classes. 

Initial List of Noun Phrases: Candidate Classes The initial study of the use cases of the bank 

system produces the following noun phrases (candidate classes-maybe).  

Account 

Account Balance  

Amount Approval 

Process 

ATM Card  

ATM Machine  

Bank  

Bank Client  

Card  

Cash  

Check  

Checking 

It is safe to eliminate the irrelevant classes. The candidate classes must be selected from 

relevant and fuzzy classes. The following irrelevant classes can be eliminated because they do not 

belong to the problem statement: Envelope, Four Digits, and Step. Strikeouts indicate eliminated 

classes.  

Account Account  

Balance Amount  

Approval Process  

ATM Card  

ATM Machine  

Bank . Bank Client  

 

Reviewing the Redundant Classes and Building a Common Vocabulary  

We need to review the candidate list to see which classes are redundant. If different words 

are being used to describe the same idea, we must select the one that is the most meaningfull the 

context of the system and eliminate the others. The following are the different class names that are 

being used to refer to the same concept:  

Client, Bank Client Account, Client's Account PIN, PIN Code  

Checking, Checking Account = Bank Client (the term chosen)  

Checking Account = Account  

Checking Account = PIN  

Checking Account = Checking Account  

Savings, Savings Account = Savings 

 

Reviewing the Classes Containing Adjectives  

By again review the remaining list, now with an eye on classes with adjectives. The main 

question is this: Does the object represented by the noun behave differently when the adjective is 

applied to it?  

However (it is a different use of the same object or the class is irrelevant, we must eliminate 

it)  

 

Reviewing the Possible Attributes  

The next review focuses on identifying the noun phrases that are attributes, not classes. The 

noun phrases used only as values should be restated as attributes. This process also will help us 

identify the attributes of the classes in the system.  



 

 

Balance: An attribute of the Account class. Invalid PIN: It is only a value, not a class. Password: An 

attribute, possibly of the Bank Client class.  

Transaction History: An attribute, possibly of the Transaction class. PIN: An attribute, possibly of 

the BankClientclass  

 

Reviewing the Class Purpose 

Identifying the classes that play role in achieving system goals and requirements is a major 

activity of object-oriented analysis) each class must have a purpose. Every class should be clearly 

defined and necessary in the context of achieving the system's goals The candidate classes are these:  

ATM Machine class: Provides an interface to the ViaNet bank.  

ATMCard class: Provides a client with a key to an account.  

Bank Client class: A client is an individual that has a checking account and, possibly, a savings 

account.  

Bank class: Bank clients belong to the Bank. It is a repository of accounts and processes the 

accounts' transactions.  

The major problem with the noun phrase approach is that it depends on the completeness and 

correctness of the available document, which is rare in real life. On the other hand, large volumes of 

text on system documentation might lead to too many candidate classes. 

The process of creating sequence or collaboration diagrams is a systematic way to think 

about how a use case (scenario) can take place; and by doing so, it forces you to think about objects 

involved in your application 

 

Implementation of Scenarios  

This process helps us to understand the behavior of the system's objects. When you have 

arrived at the lowest use-case level, you may create a child sequence diagram or accompanying 

collaboration diagram for the use case. With the sequence and collaboration diagrams, you can model 

the implementation of the scenario.  

 

The Vianet Bank ATM System: Decomposing  

Scenario with a Sequence Diagram: Object Behavior Analysis A sequence diagram 

represents the sequence and interactions of a given use case or scenario. The event line represents a 

message sent from one object to another, in which the "from" object is requesting an operation be 

performed by the "to" object. The "to" object performs the operation using a method that its class 

contains. 

We identified the use cases for the bank system. The following are the low level (executable) 

use cases:  

Deposit Checking  

Deposit Savings  

Invalid PIN  

Withdraw Checking 

Withdraw More from  

Checking Withdraw  

Savings  

Withdraw Savings  

Denied Checking  



 

 

Transaction History  Savings Transaction  History 

Point of caution: you should defer the interfaces classes to the design phase and concentrate 

on the identifying business classes here. Consider how we would prepare a sequence diagram for the 

Invalid PIN use case.  

The client in this case is whoever tries to access an account through the ATM, and major may 

not have an account. The Bank Client on the other hand has an account. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



 

 

 

CLASSES, RESPONSIBILITIES, AND COLLABORATORS (CRC)  

Classes, Responsibilities, and Collaborators is a technique used for identifying classes' 

responsibilities and therefore their attributes and methods. By identifying an object's responsibilities 

and collaborators (cooperative objects with which it works) you can identify its attributes and 

methods. CRC cards are 4" X 6" index cards.   

 

Fig: A Classes, Responsibilities, and Collaborators (CRC) index card. CRC PROCESS The 

Classes, Responsibilities, and Collaborators process consists of three steps  

1. Identify classes' responsibilities (and identify classes).  

2. Assign responsibilities.  

3. Identify collaborators.  



 

 

 

 

As cards are written for familiar objects, all participants pick up the same context and ready 

themselves for decision making. Then, by waving cards and pointing fingers and yelling statements 

like, "no, this guy should do that," decisions are made. Finally, the group starts to relax as consensus 

has been reached and the issue becomes simply finding the right words to record a decision as a 

responsibility on a card. 

 

 

This process is iterative. Start with few cards (classes) then proceed to play "what if." If the situation 

calls for a responsibility not already covered by one of the objects, either add the responsibility to an 

object or create a new object to address that responsibility. If one of the objects becomes too 

cluttered during this process, copy the information on  

Analyzing relationships among classes.  

Identifying association.  

Association patterns.  

Identifying super- and subclass hierarchies.  

Identifying aggregation or a-part-of compositions.  

Class responsibilities.  

Identifying attributes and methods by analyzing use cases and other UML diagrams.  

 

ASSOCIATIONS Association represents a physical or conceptual connection between two or more 

objects) For example, if an object has the responsibility for telling another object that a credit card 

number is valid or invalid, the two classes have an association. 

 
 



 

 

 

 

Guideline for Identifying Association A dependency between two or more classes may be an 

association. Association often corresponds to a verb or prepositional phrase, such as part of, next to, 

works for, or contained in. A reference from one class to another is an association. Some associations 

are implicit or taken from general knowledge. 

Common Association Patterns Communication association talk to, order to. For example, a 

customer places an order (communication association)with an operator person 

 

 

 

These association patterns and similar ones can be stored in the repository and added to as more 

patterns are discovered 

Ternary associations. Ternary or n-ary association is an association among more than two classes . 

Ternary associations complicate the representation. When possible, restate ternary associations as 

binary associations Directed actions (or derived) association. Directed actions (derived) 

associations can be defined in terms of other associations. Since they are redundant, avoid these types 

of association. For example, Grandparent of can be defined in terms of the parent of association (see 

Figure ). Choose association names carefully  

DESIGN AXIOMS  

By definition, an axiom is a fundamental truth that always is observed to be valid and for which there 

is no counterexample or exception. A theorem is a proposition that may not be self-evident but can 

be proven from accepted axioms. 

 

Fig:The object-oriented design process in the unified approach. Axiom 1 deals with relationships 

between system components (such as classes, requirements, and software components), and Axiom 2 



 

 

deals with the complexity of design. Axiom 1. The independence axiom. Maintain the independence 

of components. Axiom 2. The information axiom. Minimize the information content of the design. 

Axiom 1 states that, during the design process, as we go from requirement and use case to a system 

component, each component must satisfy that requirement without affecting other requirements.  

Axiom 2 is concerned with simplicity. Occam's razor says that, "The best theory explains the known 

facts with a minimum amount of complexity and maximum simplicity and straightforwardness." 

COROLLARIES AND ITS RELATIONSHIP WITH THE TWO AXIOMS From the two design 

axioms, many corollaries may be derived as a 

direct consequence of the axioms. These 

corollaries may be more useful in making specific 

design decisions, since they can be applied to 

actual situations more easily than the original 

axioms. They even may be called design rules, and 

all are derived from the two basic axioms 

The origin of corollaries. Corollaries 1, 2, and 3 

are from both axioms, whereas corollary4 is from 

axiom 1 and corollaries 5 and 6 are from axiom 2. 

Corollary 1. Uncoupled design with less information content. Highly cohesive objects can improve 

coupling because only a minimal amount of essential information need be passed between objects.  

Corollary 2. Single purpose. Each class must have a single, clearly defined purpose. When you 

document, you should be able to easily describe the purpose of a class in a few sentences.  

Corollary 3. Large number of simple classes. Keeping the classes simple allows reusability. 

Corollary 4. Strong mapping. There must be a strong association between the physical system 

(analysis's object) and logical design (design's object).  

Corollary 5. Standardization. Promote standardization by designing interchangeable components 

and reusing existing classes or components.  

Corollary 6. Design with inheritance. Common behavior (methods) must be moved to super classes. 

The super class-subclass structure must make logical sense. 

Corollary 1. Uncoupled Design with Less Information Content The main goal here is to 

maximize objects cohesiveness among objects and software components in order to improve 

coupling because only a minimal amount of essential information need be passed between 

components. Coupling is a measure of the strength of association established by a connection from 

one object or software component to another. 

Coupling is a binary relationship: A is coupled with 

B. The degree of coupling is a function of  

1. How complicated the connection is.  

2. Whether the connection refers to the object itself 

or something inside it.  

3. What is being sent or received.  



 

 

Coupling increases (becomes stronger) with increasing complexity or obscurity of the interface.  

Coupling decreases (becomes lower) when the connection is to the component interface rather than 

to an internal component 

Table contains different types of interaction couplings. Inheritance is a form of coupling between 

super- and subclasses. A subclass is coupled to its superclass in terms of attributes and methods. 

Unlike interaction coupling, high inheritance coupling is desirable 

 

Cohesion Coupling deals with interactions between objects or software components. We also need to 

consider interactions within a single object or software .component, called cohesion. Cohesion 

reflects the "single-purposeness" of an object. Highly cohesive components can lower coupling 

because only a minimum of essential information need be passed between components. Cohesion 

also helps in designing classes that have very specific goals and clearly defined purposes. Method 

cohesion, like function cohesion, means that a method should carry only one function. Corollary 2. 

Single Purpose Every class should be clearly defined and necessary in the context of achieving the 

system's goals. When you document a class, you should be able to easily explain its purpose in a 

sentence or two. If you cannot, then rethink the class and try to subdivide it into more independent 

pieces. In summary, keep it simple; to be more precise, each method must provide only one service. 

Each method should be of moderate size, no more than a page; half a page is better. 

 

Corollary 3. Large Number of Simpler Classes, Reusability The less specialized the classes are, 

the more likely future problems can be solved by a recombination of existing classes, adding a 

minimal number of subclasses. A class that easily can be understood and reused (or inherited) 

contributes to the overall system, while a complex, poorly designed class is just so much dead weight 

and usually cannot be reused Coad and Yourdon describe four reasons why people are not utilizing 

this concept:  

1. Software engineering textbooks teach new practitioners to build systems from "first principles"; 

reusability is not promoted or even discussed.  



 

 

2. The "not invented here" syndrome and the intellectual challenge of solving an interesting software 

problem in one's own unique way mitigates against reusing someone else's software component.  

3. Unsuccessful experiences with software reusability in the past have convinced many practitioners 

and development managers that the concept is not practical.  

4. Most organizations provide no reward for reusability; sometimes productivity is measured in tenns 

of new lines of code written plus a discounted credit (e.g., 50 percent less credit) for reused lines of 

code.  

Griss argues that, although reuse is widely desired and often the...benefit of utilizing object 

technology, many object - oriented reuse efforts fail because of too narrow a focus on technology and 

not on the policies set forth by an organization. He recommended an institutionalized approach to 

software development, in which software assets intentionally are created or acquired to be reusable. 

Corollary 4. Strong Mapping During the design phase, we need to design this class design its 

methods, its association with other objects, and its view and access classes. A strong mapping links 

classes identified during analysis and classes designed during the design phase (e.g., view and access 

classes). With OO techniques, the same paradigm is used for analysis, design, and implementation. 

The analyst identifies objects' types and inheritance, and thinks about events that change the state of 

objects. The designer adds detail to this model perhaps designing screens, user interaction, and client-

server interaction. The thought process flows so naturally from analyst to design that it may be 

difficult to tell where analysis ends and design begins. 

 

Corollary 5. Standardization Similarly, object-oriented systems are like organic systems, meaning 

that they grow as you create new applications. The knowledge of existing classes will help you 

determine what new classes are needed to accomplish the tasks and where you might inherit useful 

behavior rather than reinvent the wheel. Furthermore, class libraries must be easily searched, based 

on users' criteria. For example, users should be able to search the class repository with commands 

like "show me all Facet classes. " The concept of design patterns might provide a way to capture the 

design knowledge, document it, and store it in a repository that can be shared and reused in different 

applications.  

Corollary 6. Designing with Inheritance When you implement a class, you have to determine its 

ancestor, what attributes it will have, and what messages it will understand. Then, you have to 

construct its methods and protocols. Ideally, you will choose inheritance to minimize the amount of 

program instructions This is a simple, easy to understand design, although somewhat limited in the 

reusability of the classes. For example, if in another project you must build a system that models a 

vehicle assembly plant, the classes from the licensing application are not appropriate, since these 

classes have instructions and data that deal with the legal requirements of motor vehicle license 

acquisition and renewal. 

Achieving Multiple Inheritance in a Single 

Inheritance System Single inheritance means that  



 

 

each class has only a single superclass. This technique is used in Smalltalk and several other object-

oriented systems. One result of using a single inheritance hierarchy is the absence of ambiguity as to 

how an object will respond to a given method.  

 

Fig: The initial single inheritance design. 

 

Explain relationship analysis for 

the ATM banking system. To 

better gain experience in object 

relationship analysis, we use the 

familiar bank system case and apply 

the concepts for identifying 

associations, super sub relationships, 

and a-part-of relationships for the 

classes identified. Furthermore, 

object-oriented analysis and design 

are performed in an iterative process 

using class diagrams This iterative 

process is unlike the traditional 

waterfall technique, in which all 

analysis is completed before design 

begins 

Identifying Classes' Relationships 

One of the strengths of object-oriented analysis is the ability to model objects as they exist in the real 

world. To accurately do this, you must be able to model more than just an object's internal workings. 

You also must be able to model how objects relate to each other. Several different relationships exist 

in the ViaNet bank ATM system, so we need to define them  

Developing a UML Class Diagram Based on the Use-Case Analysis  

The UML class diagram is the main static analysis and design diagram of a system. The analysis 

generally consists of the following class diagrams .One class diagram for the system, which shows 

the identity and definition of classes in the system, their interrelationships, and various packages 

containing groupings of classes. 

UML class diagram for the ViaNet bank 

ATM system. Some CASE tools such as 

the SA/Object Architect can 

automatically define classes and draw 

them from use cases or collaboration/ 

sequence diagrams. However, presently, 

it cannot identify all the classes. For this 



 

 

example, S/A Object was able to identify only the BankClient class. Multiple class diagrams that 

represent various pieces, or views, of the system class diagram. Multiple class diagrams, that show 

the specific static relationships between various classes.  

Defining Association Relationships  

Identifying association begins by analyzing the interactions of each class. Remember that any 

dependency between two or more classes is an association. The following are general guidelines for 

identifying the tentative associations, as explained in 

this chapter: .Association often corresponds to verb or 

prepositional phrases, such as part of, next to, works 

for, or contained in. A reference from one class to 

another is an association. Some associations are 

implicit or taken from general knowledge. 

Other associations and their cardinalities are defined in 

Table 8-1 and demonstrated in Figure 

 

 
FIG: Associations among the ViaNet bank ATMsystem classes. 

Identifying the Aggregation/a-Part-of Relationship To identify a-part-of structures, we look for 

the following clues: .Assembly. A physical whole is constructed from physical parts. . Container. A 



 

 

physical whole encompasses but is not constructed from physical parts. . Collection-Member. A 

conceptual whole encompasses parts that may be physical or conceptual. 

 
Association, generalization, and aggregation among the ViaNet bank classes. Notice that the super-

sub arrows for CheckingAccount and SavingsAccount have merged. The relationship between 

BankClient and ATMMachine is an interface. 

Figure depicts the association, 

generalization, and aggregation 

among the bank systems classes. 

If you are wondering what the 

relationship between the Bank 

Client and ATMMachine is, it is 

an interface. Identifying a class 

interface is a design activity of 

object-oriented system 

development. 



 

 

 

 

UNIT IV 

Object Oriented Design: Designing Classes, methods – access layer object storage and object 

interoperability –access layer for the ATM banking system. View layer – designing interface objects – 

prototyping User interface – view layer for the ATM banking system  

 

1. How to Design Classes? Explain in detail.  
The most important activity in designing an application is coming up with a set of classes that works 

together to provide the needed functionality. Underlying the functionality of any application is the quality of 

its design.  

UML – OCL: UML is a graphical language with a set of rules & semantics in English in form of OCL. 

Object Constraint Language (OCL) is specification language that uses simple logic for specifying properties 

of a system. Syntax of some common navigational expressions is shown here  

 Item.selector: The selector is name of an attribute in item. The result is the value of attribute  

 Item.selector [qualifier–value]: The selector indicates a qualified association that qualifies the item. 

Result is related object selected by qualifier, eg., array indexing as form of qualification.  

 Set select (Boolean–expression): Boolean expression is written in terms of objects within the set  

 

The Process  

During the design phase the classes identified in OOA must be revisited with a shift in focus to their 

implementation. New classes or attributes & methods are to added for implementation purposes & user 

interfaces.  

The process consists of following activities  

1. Apply design axioms to design classes, their attributes, methods, associations, structures & protocols. It 

constitutes two separate steps  

⇒ Refine & complete the static UML class diagram by adding details. This steps consists of Refine 

attributes  

Design methods & protocols by UML activity diagram to represent methods algorithm Refine 

associations between classes (if required)  

Refine class hierarchy & design with inheritance (if required)  

⇒ Iterate and refine again  

Object oriented design is an iterative process. At each iteration, you can improve the design.  

 

Class visibility  

The main objective is designing well defined public, private & protected protocols  

Public protocols define the functionality & external messages of an object; private protocols define 

implementation of an object.  

Private Protocol (visibility) of class includes messages that normally should not be sent from other 

objects; it is accessible only to operations of that class.  

In protected protocol (visibility), subclasses use method in addition to class itself. Encapsulation 

leakage – is a lack of well designed protocol  

The problem of encapsulation leakage occurs when details about a class‟s internal implementation 

are disclosed through the interface.  

Refining Attributes  

The main goal of this activity is to refine existing attributes (identified in analysis) or add attributes 

that can elevate the system into implementation.  

Attributes Types  

The three basic types of attributes are  



 

 

 

- Single-value attributes.  

- Multiplicity or Multi-value attributes.  

- Reference to another object, or instance connection.  

 

Attributes represent the state of an object. When the state of the object changes, these changes are reflected 

in the value of attributes.  

Single value attribute has only one value or state. (Eg). Name, address, salary.  

Multiplicity or multivalue attribute can have a collection of many values at any time. (Eg) If we want 

to keep track of the names of people who have called a customer support line for help.  

Instance connection attributes are required to provide the mapping needed by an object to fulfill its 

responsibilities.  

(E.g.) A person may have one or more bank accounts. 

 A person has zero to many instance connections to Account(s). Similarly, an Account can be 

assigned to one or more person(s) (joint account). So an Account has zero to many instance connection to 

Person(s).  

UML Attribute presentation: The following is the attribute presentation suggested by UML 

Visibility name: type–expression = initial–  

 

value where visibility is one of following 

 + public visibility (accessibility to all classes)  

# protected visibility (accessibility to subclasses & operations of class)  

⎯ private visibility (accessibility only to operations of the class)  

Type–expression is language–dependent specification of implementation type of an attribute. Initial 

value is language–dependent expression for initial value of newly created object and is optional.  

2. How to Design Methods and Protocols? Explain in detail.  

A class can provide several types of methods:  

- Constructor: Method that creates instances (objects) of the class  

- Destructor: The method that destroys instances  

- Conversion Method: The method that converts a value from one unit of measure to another.  

- Copy Method: The method that copies the contents of one instance to another instance  

- Attribute set: The method that sets the values of one or more attributes  

- Attribute get: The method that returns the values of one or more attributes  

- I/O methods: The methods that provide or receive data to or from a device  

- Domain specific: The method specific to the application.  

Use private and protected protocols to define the functionality of the object. Remember five rules to 

avoid bad design: 

 If it looks messy, then its probably a bad design  

If it looks too complex, then its probably a bad design  

If it is too big, then its probably a bad design 

If people don‟t like it, then its probably a bad  

design If it doesn‟t work, then its probably a bad 

design  

Apply design axioms and corollaries to avoid design pitfalls and use UML operation presentation 

which is similar to syntax of UML attribute representation 

 UML operation presentation: The following is the operation presentation suggested by UML 

Visibility name: (parameter-list): return-type-expression  

where visibility is one of following  

+ public visibility (accessibility to all classes) 



 

 

 

# protected visibility (accessibility to subclasses & operations of class)  

⎯ private visibility (accessibility only to operations of the class) 

 parameter-list: is a list of parameters, separated by commas, each 

 specified by name: type-expression = default value 

return-type-expression: is a language dependent specification of the implementation of the value returned by 

the method.  

Eg: +getName(): aName +getAccountNumber (account: type): account Number 

 

 

3. Explain briefly the functions of Access Layer in detail. Object Storage and Object Interoperability 

Object Storage and persistence:- 

A database management system (DBMS) is a set of programs that enables the creation maintenance of a 

collection of related data. The fundamental purpose is to provide a reliable, persistent data storage facility & 

mechanisms for efficient, convenient data access & retrieval Persistence refers to the ability of some objects to 

outlive the programs that created them. A program will create a large amount of data throughout its execution. 

Each item of data will have a different life time. Atkinson et al. describe six broad categories of life time of data: 

 

 Transient results to evaluation of expressions  

 Variables involved in procedure activation (parameters & variables with a localized scope)  

 Global variables & variables that are dynamically allocated  

 Data that exist between the executions of a program  

 Data that exist between the versions of a program  

 Data that outlive a program  

The first three categories are transient data, data that cease to exist beyond lifetime of creating process. 

The other three are non-transient or persistent data. A file or a database can provide a longer life for objects – 

longer than duration of process in which they were created. From a language perspective, this characteristic is 

called persistence. Essential elements in providing a persistent store are 

 
1. Identification of persistent objects or reach ability (object ID).  

2. Properties of objects & their interconnections. The store must be able to coherently manage non-pointer 

& pointer data (i.e., inter-object references).  

3. Scale of the object store. The object store should provide a conceptually infinite store.  

4. Stability: The system should be able to recover from unexpected failures and return the system to a  

 

recent self–consistent state. This is similar to reliability requirements of a DBMS.  

 

Data Base Management Systems: - 

DBMS is a set of programs that enable the creation & maintenance of a collection of related data. They 

have number of properties that distinguish them from file–based data management approach  

 A fundamental characteristic of database approach is that DBMS contains not only data but complete 

definition of data formats it manages. This description is known as schema or meta–data containing a complete 

definition of data formats, such as data structures, types & constraints  

 Advantage of database approach is that it will provide a generic storage management mechanism. 

Another one is program – data independence  

 Database Views: DBMS provides the database users with a conceptual representation that is 

independent of low–level details (physical view) of how the data are stored. The database an provide an abstract 

data model that uses logical concepts such as field, records, tables & their interrelationships. DBMS can provide 

multiple virtual views of data that are tailored to individual applications. This allows convenience of private data 

representation with advantage of globally managed information  



 

 

 

 

Database Models: It is a collection of logical constructs used to represent the data structure & data relationships 

within the database. It is grouped into two categories:  

Conceptual model is concerned with what is represented in the database & Implementation model is concerned 

with how it is represented. It can be stated as Hierarchical model, Network model, Relational model (tuples – 

Primary key & foreign key) Database  

Interface: The interface on a database must include a data definition language (DDL), query and data 

manipulation language (DML) 

 

 Database systems adopt two approaches for interfaces with system. One is to embed a database language 

(SQL) & other is to extend the host programming language with database constructs  

 Database Schema & DDL: DDL is the language used to describe structure of & relationships between 

objects stored in a database. This structure of information is database schema  

 DML & Query Capabilities: DML is language that allows users to access & manipulate data 

organization. SQL is standard DML for relational DBMSs. It is widely used for its query capabilities. 

The  

Query usually specifies 

The domain of the discourse over which to ask the query  

The elements of general interest  

The conditions or constraints that apply 



 Dept of CSE 

Object Oriented Analysis and Design 1 

 

 

 

 

 

 

 

 

 

 

 

Subject Name: OBJECT ORIENTED ANALYSIS AND DESIGN Subject Code: CS E61 

 

 

 

UNIT – V 

Design Patterns: Design Patterns – Describing design patterns - catalog of design patterns – organizing 

the catalog – How design patterns solve design problems – How to select a design pattern – How to use a 

design pattern – creational pattern: Abstract factory – structural pattern: Adapter – behavioral pattern: 

chain of responsibility. 



 Dept of CSE 

Object Oriented Analysis and Design 2 

 

 

2 Marks 

1. What is a Design Pattern? 

The design patterns are descriptions of communicating objects and classes that are customized to 

solve a general design problem in a particular context. 

 

2. What are the four essential elements for design pattern? 

 The Pattern name 

 The problem 

 The solution 

 The consequence 

 

3. What does design pattern provide? 

A design pattern provides a scheme for refining the subsystems or components of a software system or 

the relationship among them. Design patterns are devices that allow systems to share knowledge about 

their design, by describing commonly recurring structures of communicating components that solve a 

general design problem within a particular context. 

 

4. Briefly discuss about the purpose criteria in design patterns. 

The first criterion in design patterns, called purpose, reflects what a pattern does. Patterns can have 

creational, structural, or behavioral purpose. 

• Creational patterns concern the process of object creation. 

• Structural patterns deal with the composition of classes or objects. 

• Behavioral patterns characterize the ways in which classes or objects interact and distribute 

responsibility. 



 Dept of CSE 

Object Oriented Analysis and Design 3 

 

 

 

5. Briefly discuss about the scope criteria in design patterns. 

The second criterion in design patterns, called Scope, which specifies whether the pattern applies 

primarily to classes or to objects: 

 Class patterns deal with relationships between classes and their subclasses. These relationships are 

established through inheritance, so they are static. 

 Object patterns deal with object relationships, which can be changed at run-time and are more 

dynamic. 

 

6. What is meant by abstract class? 

An abstract class is one whose main purpose is to define a common interface for its subclasses. 

Classes that are not abstract are called concrete classes. 

7. What is meant by delegation? 

Delegation is a way of making composition as powerful for reuse as inheritance. In delegation, two 

objects are involved in handling a request: a receiving object delegates operation to its delegate. The 

receiver passes itself to the delegate to let the delegated operation refer to the receiver. 

 

8. Define toolkit. 

A toolkit is a set of related and reusable classes designed to provide useful, general-purpose functionality. 
An example of a toolkit is a set of collection classes for lists, associative tables, stacks and etc. 

 

9. Define framework 

A framework is a set of cooperating classes that make up a reusable design for a specific class of 

software. For example, a framework can be geared toward building graphical editors for different 

domains like artistic drawing, music composition, and mechanical CAD. 

10. What is meant by creational design pattern 

Creational design patterns are all about class instantiation. It deals with system independence from object 

composition, creation and representation. Creational design patterns can be further divided into class- 

creational patterns and object-creational patterns. 

 Class Creational Pattern uses inheritance to vary the class that‘s instantiated. Factory Method is an 
example of class-creational Pattern. 

 Object-creational pattern will delegate instantiation to another object. Abstract Factory, Builder, 

Prototype and Singleton belong to this category. 

 

11. Describe Abstract Factory 

Provide an interface for creating families of related or dependent objects without specifying their concrete 

classes. 

12. Define Adapter 

Convert the interface of a class into another interface clients expect. Adapter lets classes work together 

that couldn't otherwise because of incompatible interfaces. 

13. Define Chain of Responsibility 

Avoid coupling the sender of a request to its receiver by giving more than one object a chance to handle 

the request. Chain the receiving objects and pass the request along the chain until an object handles it. 

14. Discuss the consequences of abstract factory pattern 

The Abstract Factory pattern has the following consequences: 

 Isolates concrete classes by helping programmers to control the classes of objects that an 

application creates. 



 Dept of CSE 

Object Oriented Analysis and Design 4 

 

 

 

 Makes exchanging product families easy because the class of a concrete factory appears only 

once in an application, at the place of its instantiation. This makes it easy to change the concrete 

factory that an application uses. 

 Promotes consistency among products by enforcing to use objects from the same family of 

objects. 

 Supporting new kinds (in each family) of products is difficult since we need not only to define 

new product objects but also to extend all factories to be able to create those new product objects. 

 

15. When to use abstract factory pattern 

The Abstract Factory pattern can be used when 

 A system should be independent of how its products are created, composed, and represented. 

 A system should be configured with one of multiple families of products. 

 A family of related product objects is designed to be used together, and you need to enforce this 
constraint. 

 you want to provide a class library of products, and you want to reveal just their interfaces, not 

their implementations. 

 

16. Describe briefly about structural patterns 

Structural patterns are concerned with how classes and objects are composed to form larger structures. 

Structural class patterns use inheritance to compose interfaces or implementations. As a simple example, 

consider how multiple inheritances mix two or more classes into one. The result is a class that combines 

the properties of its parent classes. 

17. What is meant by behavioral patterns 

Behavioral patterns are concerned with algorithms and the assignment of responsibilities between objects. 

Behavioral patterns describe not just patterns of objects or classes but also the patterns of communication 

between them. These patterns characterize complex control flow that's difficult to follow at run-time. 

Behavioral class patterns use inheritance to distribute behavior between classes. 

 

18. What are the benefits of chain of responsibility 

Chain of Responsibility has the following benefits 
1. Reduced coupling. The pattern frees an object from knowing which other object handles a request. An 

object only has to know that a request will be handled "appropriately." Both the receiver and the sender 

have no explicit knowledge of each other, and an object in the chain doesn't have to know about the 

chain's structure. 

2. Added flexibility in assigning responsibilities to objects. Chain of Responsibility gives you added 

flexibility in distributing responsibilities among objects. You can add or change responsibilities for 

handling a request by adding to or otherwise changing the chain at run-time. You can combine this with 

subclassing to specialize handlers statically. 

 

19. What is the disadvantage of chain of responsibility 

Since a request has no explicit receiver, there's no guarantee it'll be handled—the request can fall off the 

end of the chain without ever being handled. A request can also go unhandled when the chain is not 

configured properly. 

 

20. How will you Select a Design Pattern 

1. Consider how design patterns solve design problems. 

2. Scan Intent sections. 

3. Study how patterns interrelate. 

4. Study patterns of like purpose. 

5. Examine a cause of redesign. 

6. Consider what should be variable in your design. 



 Dept of CSE 

Object Oriented Analysis and Design 5 

 

 

 

21. How to Use a Design Pattern 

1. Read the pattern once through for an overview. 

2. Go back and study the Structure, Participants, and Collaborations sections. 

3. Look at the Sample Code section to see a concrete example of the pattern in code. 

4. Choose names for pattern participants that are meaningful in the application context. 

5. Define the classes. 

6. Define application-specific names for operations in the pattern. 

7. Implement the operations to carry out the responsibilities and collaborations in the pattern. 

 

22. What are the different techniques used for implementing abstract factory pattern 

Some useful techniques for implementing the Abstract Factory pattern are 

 Factories as singletons. 

 Creating the products. 

 Defining extensible factories. 

 

23. When can the adapter pattern be used 

The Adapter pattern can be used when 

 We want to use an existing class, and its interface does not match the one you need. 

 We want to create a reusable class that cooperates with unrelated or unforeseen classes, that is, 
classes that don't necessarily have compatible interfaces. 

 (object adapter only) We need to use several existing subclasses, but it's impractical to adapt their 

interface by subclassing every one. An object adapter can adapt the interface of its parent class. 

 

24. What is a class adapter 

A class adapter 

 Adapts Adaptee to Target by committing to a concrete Adapter class. As a consequence, a class 

adapter won't work when we want to adapt a class and all its subclasses. 

 Lets Adapter override some of Adaptee's behavior, since Adapter is a subclass of Adaptee. 

 Introduces only one object, and no additional pointer indirection is needed to get to the adaptee. 

 

25. What is an object adapter 

An object adapter 

 Lets a single Adapter work with many Adaptees—that is, the Adaptee itself and all of its 

subclasses (if any). The Adapter can also add functionality to all Adaptees at once. 

 Makes it harder to override Adaptee behavior. It will require subclassing Adaptee and making 

Adapter refer to the subclass rather than the Adaptee itself. 

 

26. What are the issues in implementing adapter. 

Some of the issues in implementing adapter are 
1. Implementing class adapters in C++. In a C++ implementation of a class adapter, Adapter would 

inherit publicly from Target and privately from Adaptee. Thus Adapter would be a subtype of Target but 

not of Adaptee. 

2. Pluggable adapters. Let's look at three ways to implement pluggable adapters for the TreeDisplay 
widget described earlier, which can lay out and display a hierarchical structure automatically. 

 

27. What are the implementation approaches of narrow interface 

The narrow interface leads to three implementation approaches: 

 Using abstract operations. 

 Using delegate objects. 

 Parameterized adapters. 



 Dept of CSE 

Object Oriented Analysis and Design 6 

 

 

 

28. When to Use Chain of Responsibility 

Use Chain of Responsibility when 

 More than one object may handle a request, and the handler isn't known a priori. The handler 

should be ascertained automatically. 

 You want to issue a request to one of several objects without specifying the receiver explicitly. 

 The set of objects that can handle a request should be specified dynamically. 

 

29. What are the implementation issues in Chain of Responsibility 

Here are implementation issues to consider in Chain of Responsibility: 

1. Implementing the successor chain. 

2. Connecting successors. 

3. Representing requests. 

4. Automatic forwarding in Smalltalk. 
 

30. What is meant by Pluggable adapters. 
A class is more reusable when you minimize the assumptions other classes must make to use it. By 

building interface adaptation into a class, you eliminate the assumption that other classes see the same 

interface. 

 

11 Marks 

 

1. What is Design Pattern? Explain its elements. 

Design patterns make it easier to reuse successful designs and architectures. Expressing proven 

techniques as design patterns makes them more accessible to developers of new systems. 

Design patterns help you choose design alternatives that make a system reusable and avoid 

alternatives that compromise reusability. 

 

Design patterns can even improve the documentation and maintenance of existing systems by 

furnishing an explicit specification of class and object interactions and their underlying intent. Put simply, 

design patterns help a designer get a design ―right‖ faster. 

 

Design Patterns are the best solutions for the re-occurring problems in the application programming 

environment. The solutions are expressed in terms of objects and interfaces. 

A pattern has four essential elements: 
1. The pattern name is a handle we can use to describe a design problem, its solutions, and consequences 

in a word or two. Naming a pattern immediately increases our design vocabulary. It lets us design at a 

higher level of abstraction. It makes it easier to think about designs and to communicate them and their 

trade-offs to others. Finding good names has been one of the hardest parts of developing our catalog. 

 

2. The problem describes when to apply the pattern. It explains the problem and its context. It might 

describe specific design problems such as how to represent algorithms as objects. It might describe class 

or object structures that are symptomatic of an inflexible design. Sometimes the problem will include a 

list of conditions that must be met before it makes sense to apply the pattern. 

3. The solution describes the elements that make up the design, their relationships, responsibilities, and 

collaborations. The solution doesn't describe a particular concrete design or implementation, because a 

pattern is like a template that can be applied in many different situations. Instead, the pattern provides an 

abstract description of a design problem and how a general arrangement of elements (classes and objects 

in our case) solves it. 

 

4. The consequences are the results and trade-offs of applying the pattern. Though consequences are 

often unvoiced when we describe design decisions, they are critical for evaluating design alternatives and 



 Dept of CSE 

Object Oriented Analysis and Design 7 

 

 

 

for understanding the costs and benefits of applying the pattern. The consequences for software often 

concern space and time trade-offs. They may address language and implementation issues as well. Since 

reuse is often a factor in object-oriented design, the consequences of a pattern include its impact on a 

system's flexibility, extensibility, or portability. Listing these consequences explicitly helps you 

understand and evaluate them. 

 

The design patterns are descriptions of communicating objects and classes that are customized to solve a 

general design problem in a particular context. 

 

A design pattern names, abstracts, and identifies the key aspects of a common design structure that make 

it useful for creating a reusable object-oriented design. 

The design pattern identifies the participating classes and their instances, their roles and collaborations, 

and the distribution of responsibilities. 

Each design pattern focuses on a particular object-oriented design problem or issue. It describes when it 

applies, whether or not in can be applied in view of other design constraints, and the consequences and 

trade-offs of its use. 

 

 

2. Explain briefly Describing Design patterns. 

Design Patterns are described in Graphical notations, while important and useful, aren't sufficient. 

They simply capture the end product of the design process as relationships between classes and objects. 

To reuse the design, we must also record the decisions, alternatives, and trade-offs that led to it. Concrete 

examples are important too, because they help you see the design in action. The Gang of Four (GoF) used 

a consistent format to describe patterns. They developed a template for describing a design pattern. The 

template lent a uniform structure to the information and made design patterns easier to learn, compare and 

use. This template describes a design pattern with: 

 

Pattern Name and Classification 

It conveys the essence of the pattern succinctly good name is vital, because it will become part of 

design vocabulary. 

Intent 

 What does the design pattern do? 

 What is it‘s rational and intend? 

 What particular design issue or problem does it address? 

Also Known As 

Other well-known names for the pattern, if any. 

Motivation 

A scenario that illustrates a design problem and how the class and object structures in the 

pattern solve the problem. The scenario will help you to understand the more abstract description of the 

pattern. 

Applicability 

 What are the situations in which the design patterns can be applied? 

 What are examples of the poor designs that the pattern can address? 

 How can recognize situations? 



 Dept of CSE 

Object Oriented Analysis and Design 8 

 

 

 

Structure 

Graphical representation of the classes in the pattern using a notation based on the object 

Modeling Technique(OMT). 

Participants 

The classes and/or objects participating in the design pattern and their responsibilities. 

Collaborations 

How the participants collaborate to carry out their responsibilities. 

Consequences 

 How does the pattern support its objectives? 

 What are the trade-offs and result of using the pattern? 

 What aspect of the system structure does it let vary independently? 

Implementation 

What pitfalls, hints, or techniques should be aware of when implementing the pattern ? 

Sample Code 

Code fragments that illustrate how might implement the pattern in c++ or Smalltalk. 

Known Uses 

Examples of the pattern found in real systems. 

Related Patterns 

What design patterns are closely related to this one? What are the important differences? 

With Which other patterns should this one be used? 

3. Explain the Catalog of Design patterns. 
 

Design Pattern Name Description 

Abstract Factory Provide an interface for creating families of related or dependent objects without 

specifying their concrete classes. 

Adapter Convert the interface of a class into another interface clients expect. 

Bridge Decouple an abstraction from its implementation so that two can vary 

independently. 

Builder Separate the construction of a complex object from its representation so that the 

same construction process can create different representations. 

Chain of 

Responsibility 

Avoid coupling the sender of a request to its receiver by giving more than one 

object a chance to handle the request. Chain the receiving objects and pass the 

request along the chain until an object handles it. 

Command Encapsulate a request as an object, thereby letting you parameterize clients with 

different requests, queue or log requests, and support undoable operations. 

Composite Compose objects into tree structures to represent part-whole hierarchies. 

Composite lets clients treat individual objects and compositions of objects 

uniformly. 

Decorator Attach additional responsibilities to an object dynamically. Decorators provide a 

flexible alternative to sub-classing for extending functionality. 

Facade Provide a unified interface to a set of interfaces in a subsystem. Façade defines a 

higher-level interface that makes the subsystem easier to use. 



 Dept of CSE 

Object Oriented Analysis and Design 9 

 

 

 

Factory Method Define an interface for creating an object, but let subclasses decide which class 

to instantiate. 

Flyweight Use sharing to support large numbers of fine-grained objects efficiently. 

Interpreter Given a language, define a representation for its grammar along with an 

interpreter that uses the representation to interpret sentences in the language. 

Iterator Provide a way to access the elements of an aggregate object sequentially 

without exposing its underlying representation. 

Mediator Define an object that encapsulates how a set of objects interact. Mediator 

promotes loose coupling by keeping objects from referring to each other 

explicitly, and it lets you vary their interaction independently. 

Memento Without violating encapsulation, capture and externalize an object's internal 

state so that the object can be restored to this state later. 

Observer Define a one-to-many dependency between objects so that when one object 

changes state, all its dependents are notified and updated automatically. 

Prototype Specify the kinds of objects to create using a prototypical instance, and create 

new objects by copying this prototype 

Proxy Provide a surrogate or placeholder for another object to control access to it. 

Singleton Ensure a class only has one instance, and provide a global point of access to it. 

State Allow an object to alter its behavior when its internal state changes. The object 

will appear to change its class. 

Strategy Define a family of algorithms, encapsulate each one, and make them 

interchangeable. Strategy lets the algorithm vary independently from clients that 

use it. 

Template Method Define the skeleton of an algorithm in an operation, deferring some steps to 

subclasses. Template Method lets subclasses redefine certain steps of an 

algorithm without changing the algorithm's structure. 

Visitor Represent an operation to be performed on the elements of an object structure. 

Visitor lets you define a new operation without changing the classes of the 

elements on which it operates. 

 

4. How to organize the catalog? Explain in detail. 

Design patterns vary in their granularity and level of abstraction. Because there are many design 

patterns, we need a way to organize them. This section classifies design patterns so that we can refer to 

families of related patterns. The classification helps you learn the patterns in the catalog faster, and it can 

direct efforts to find new patterns as well. 

We classify design patterns by two criteria as shown in the table. 

The first criterion, called purpose, reflects what a pattern does. Patterns can have either creational, 

structural, or behavioral purpose. 

• Creational patterns concern the process of object creation. 

• Structural patterns deal with the composition of classes or objects. 

• Behavioral patterns characterize the ways in which classes or objects interact and distribute 

responsibility. 



 Dept of CSE 

Object Oriented Analysis and Design 10 

 

 

 

The second criterion, called Scope, which specifies whether the pattern applies primarily to classes or to 
objects: 

• Class patterns deal with relationships between classes and their subclasses. These relationships are 

established through inheritance, so they are static. 

 

• Object patterns deal with object relationships, which can be changed at run-time and are more 

dynamic. 
 

 

 

Table: Design pattern space 

Almost all patterns use inheritance to some extent. So the only patterns labeled "class patterns" are 

those that focus on class relationships. Note that most patterns are in the Object scope. Creational class 

patterns defer some part of object creation to subclasses, while Creational object patterns defer it to 

another object. The Structural class patterns use inheritance to compose classes, while the Structural 

object patterns describe ways to assemble objects. The Behavioral class patterns use inheritance to 

describe algorithms and flow of control, whereas the Behavioral object patterns describe how a group of 

objects cooperate to perform a task that no single object can carry out alone. 

 

There are other ways to organize the patterns. Some patterns are often used together. For example, 

Composite is often used with Iterator or Visitor. Some patterns are alternatives: Prototype is often an 

alternative to Abstract Factory. Some patterns result in similar designs even though the patterns have 

different intents. For example, the structure diagrams of Composite and Decorator are similar. Yet 

another way to organize design patterns is according to how they reference each other in their "Related 

Patterns" sections. Figure depicts these relationships graphically. Clearly there are many ways to 

organize design patterns. Having multiple ways of thinking about patterns will deepen your insight into 

what they do, how they compare, and when to apply them. 



 Dept of CSE 

Object Oriented Analysis and Design 11 

 

 

 

 

 
 

 

 

5. How Design Patterns solve design problems? 

 

1. Finding Appropriate Objects 
• Design patterns help you identify less-obvious abstractions and the objects that can capture 

them. 

2. Determining Object Granularity 

• Facade pattern describes how to represent complete subsystems as objects. 

• Flyweight pattern describes how to support huge numbers of objects at the finest 

granularities. 

• Abstract Factory and Builder yield objects whose only responsibilities are creating other objects. 
• Visitor and Command yield objects whose only responsibilities are to implement a request 

on another object or group of objects. 

3. Specifying Object Interfaces 

• The set of all signatures defined by an object's operations is called the interface to the object. 



 Dept of CSE 

Object Oriented Analysis and Design 12 

 

 

 

• A type is a name used to denote a particular interface. 

• An object may have many types, and widely different objects can share a type. 

• A type is a subtype of another if its interface contains the interface of its supertype, or a subtype 

inheriting the interface of its supertype. 

• Objects are known only through their interfaces. An object's interface says nothing about its 

implementation 

• When a request is sent to an object, the particular operation that's performed depends on both 

the request and the receiving object. 

• Dynamic binding: the run-time association of a request to an object and one of its 

operations. 

• Polymorphism: dynamic binding can substitute objects that have identical interfaces for each 

other at run-time 

• Design patterns help you define interfaces by identifying their key elements and the kinds of data 

that get sent across an interface. 

• Design patterns also specify relationships between interfaces. 

4. Specifying Object Implementations 

• An object's implementation is defined by its class. 

 

 

• Objects are created by instantiating a class. 

• A dashed arrowhead line indicates a class that instantiates objects of another class. The arrow 
points to the class of the instantiated objects. 

 

 

New classes can be defined in terms of existing classes using class inheritance. When a 

subclass inherits from a parent class, it includes the definitions of all the data and operations that 

the parent class defines. Objects that are instances of the subclass will contain all data defined by 

the subclass and its parent classes, and they'll be able to perform all operations defined by this 

subclass and its parents. 
 



 Dept of CSE 

Object Oriented Analysis and Design 13 

 

 

 

• An abstract class is one whose main purpose is to define a common interface for its subclasses. 
 

• A mixin class is a class that's intended to provide an optional interface or functionality to other 

classes. 

 

Class versus Interface Inheritance 

 An object's class defines how the object is implemented. 

 An object's type only refers to its interface. 

 An object can have many types. 

 Objects of different classes can have the same type. 

 - Relationship between class and type: class as type (C++) vs. interface as type (Java). 

 Class inheritance: Sub-typing + Implementation inheritance. 

 Interface inheritance: Sub-typing only (Polymorphism). 

 Pure abstract classes as interfaces. 

 Many of the design patterns depend on the distinction between class and interface 

inheritances 

First Principle of reusable object-oriented design: 

Programming to an Interface, not an Implementation 

o Class inheritance-based implementation reuse is only half the story. Inheritance's ability to 

define families of objects with identical interfaces is also important, because polymorphism 

depends on it. 

o Two benefits to manipulating objects solely in terms of the interface defined by abstract 

classes: 

1. Clients remain unaware of the specific types of objects they use, as long as the objects 

adhere to the interface that clients expect. 

2. Clients remain unaware of the classes that implement these objects. Clients only know about 

the abstract class(es) defining the interface. 

o Don't declare variables to be instances of particular concrete classes. 
o Creational patterns ensure that your system is written in terms of interfaces, not 

implementations. 

5. Putting Reuse Mechanisms to Work 

Inheritance versus Composition 

 White-box reuse: class inheritance. 

 Black-box reuse: object composition 

o Class inheritance: 



 Dept of CSE 

Object Oriented Analysis and Design 14 

 

 

 

Advantages 

supported by programming languages, defined statically at compile-time 

and is straightforward to use. 

ƒ make it easier to modify the implementation being reused, when a subclass 

overrides some but not all operations. 

Disadvantages 
ƒ Cannot change the implementations/representations inherited from parent classes at 

run-time. 

ƒ Implementation dependency between a subclass and its parent class. 

o Object composition 

Advantages 

ƒ Defined dynamically at run-time by referencing interfaces of objects. 

ƒ Access other objects though their interfaces only, not break encapsulation. 

ƒ Fewer implementation dependencies. 

ƒ Small class hierarchies. 

Disadvantages 

ƒ More objects. 

ƒ The system's behavior will depend on their interrelationships instead of being 

defined in one class. 

The second principle of object-oriented design: 

Favor object composition over class inheritance. 

 

Delegation 

o In delegation, two objects are involved in handling a request: a receiving object delegates 

operations to its delegate. 

o The receiver passes itself to the delegate to let the delegated operation refer to the receiver. 
 

 

o Advantage: it makes it easy to compose behaviors at run-time and to change the way they're 

composed. 

o Disadvantage: harder to understand than more static software, and run-time inefficiencies, 

o Delegation works best when it's used in standard patterns. 

o Design patterns that use delegation: State, Strategy, Visitor, Mediator, Chain of 

Responsibility, and Bridge patterns. 

6. Relating Run-Time and Compile-Time Structures 

• An object-oriented program's run-time structure often bears little resemblance to its code 

structure. 

• Aggregation 

o Manifested at run-times. 

o One object owns (having) or is responsible for another object (being part). 

 



 Dept of CSE 

Object Oriented Analysis and Design 15 

 

 

 

• Acquaintance 

o Manifested at compile-times. 

o An object merely knows of another object (association, using). 

o A weaker relationship than aggregation. 

• In implementation or code, aggregation and acquaintance cannot be distinct. 

• Many design patterns capture the distinction between compile-time and run-time 

structures explicitly. 

• The run-time structures aren't clear from the code until you understand the patterns. 

 

7. Designing for Change 

• Common causes of redesign along with the design pattern(s) that address them: 

1. Creating an object by specifying a class explicitly. 

Design patterns: Abstract Factory, Factory Method, Prototype. 

2. Dependence on specific operations.. 

Design patterns: Chain of Responsibility, Command. 

3. Dependence on hardware and software platform.. Design 

patterns: Abstract Factory, Bridge. 

4. Dependence on object representations or implementations.. 

Design patterns: Abstract Factory, Bridge, Memento, Proxy. 

5. Algorithmic dependencies. 

Design patterns: Builder, Iterator , Strategy, Template Method , Visitor. 

6. Tight coupling. 
Design patterns: Abstract Factory, Bridge, Chain of Responsibility, Command, Facade, 
Mediator, Observer. 

Extending functionality by subclassing. 

Design patterns: Bridge, Chain of Responsibility, Composite, Decorator, Observer, 

Strategy. 

7. Inability to alter classes conveniently. 

Design patterns: Adapter, Decorator, Visitor. 

 

• The role design patterns play in the development of three broad classes of software: application 
programs, toolkits, and frameworks. 

• Application Programs 

ƒ Internal reuse, maintainability, and extension are high priorities. 

ƒ Design patterns that reduce dependencies can increase internal reuse. 
ƒ Design patterns make an application more maintainable when they're used to limit 

platform dependencies and to layer a system. 

ƒ Design patterns enhance extensibility. 

• Toolkits (class/component libraries) 

o Code reuse 

o Application-general design 

• Frameworks 

o A framework is a set of cooperating classes that make up a reusable design for a specific 

class of software. 

o The framework dictates the architecture of your application. 

o Frameworks emphasize design reuse over code reuse. 

o Frameworks are implemented as class hierarchies.. 

o Reuse on framework level leads to an inversion of control between the application and the 

software on which it's based. 

o Mature frameworks usually incorporate several design patterns 

o Design patterns vs. frameworks 

1. Design patterns are more abstract than frameworks. 

2. Design patterns are smaller architectural elements than frameworks. 

3. Design patterns are less specialized than frameworks. 



 Dept of CSE 

Object Oriented Analysis and Design 16 

 

 

 

6. How to Select a Design Pattern? 

With more than 20 design patterns in the catalog to choose from, it might be hard to find the one 

that addresses a particular design problem, especially if the catalog is new and unfamiliar to you. Here are 

several different approaches to finding the design pattern that's right for your problem: 

 

1. Consider how design patterns solve design problems. 
How design patterns help you find appropriate objects, determine object granularity, specify 

object interfaces, and several other ways in which design patterns solve design problems. Referring to 

these discussions can help guide your search for the right pattern. 

2. Scan Intent sections. 

Lists the Intent sections from all the patterns in the catalog. Read through each pattern's intent to 

find one or more that sound relevant to your problem. 

 

3. Study how patterns interrelate. 

Studying the relationships between design patterns graphically can help direct you to the right 
pattern or group of patterns. 

 

4. Study patterns of like purpose. 

The catalog has three chapters, one for creational patterns, another for structural patterns, and a 

third for behavioral patterns. Each chapter starts off with introductory comments on the patterns and 

concludes with a section that compares and contrasts them. These sections give you insight into the 

similarities and differences between patterns of like purpose. 

5. Examine a cause of redesign. 

Look at the causes of redesign starting to see if your problem involves one or more of them. Then 

look at the patterns that help you avoid the causes of redesign. 

 

6. Consider what should be variable in your design. 

This approach is the opposite of focusing on the causes of redesign. Instead of considering what 

might force a change to a design, consider what you want to be able to change without redesign. The 

focus here is on encapsulating the concept that varies a theme of many design patterns. Table lists the 

design aspect(s) that design patterns let you vary independently, thereby letting you change them without 

redesign. 

 

Purpose Design Pattern Aspect(s) that can vary 

 

 

Creational 

Abstract Factory families of product objects 

Builder how a composite object gets created 

Factory Method subclass of object that is instantiated 

Prototype class of object that is instantiated 

Singleton the sole instance of a class 

 

 

 

Structural 

Adapter interface to an object 

Bridge implementation of an object 

Composite structure and composition of an object 

Decorator 
responsibilities of an object without sub 
classing 

Facade interface to a subsystem 

Flyweight storage costs of objects 

Proxy how an object is accessed; its location 

 

Behavioral 

Chain of Responsibility object that can fulfill a request 

Command when and how a request is fulfilled 

Interpreter grammar and interpretation of a language 



 Dept of CSE 

Object Oriented Analysis and Design 17 

 

 

 

 Iterator how an aggregate's elements are accessed, 
traversed 

Mediator how and which objects interact with each other 

Memento what private information is stored outside an 
object, and when 

Observer number of objects that depend on another 

object; how the dependent objects stay up to 

date 

State states of an object 

Strategy an algorithm 

Template Method steps of an algorithm 

Visitor operations that can be applied to object(s) 
without changing their class(es) 

Table 1.2: Design aspects that design patterns let you vary 

 

7. How to Use a Design Pattern? 

Once picked a design pattern, follow the step-by-step approach to applying a design pattern effectively: 

1. Read the pattern once through for an overview. 

Pay particular attention to the Applicability and Consequences sections to ensure the pattern is 

right for the problem. 

2. Go back and study the Structure, Participants, and Collaborations sections. 

Make sure you understand the classes and objects in the pattern and how they relate to one 

another. 

3. Look at the Sample Code section to see a concrete example of the patternin code. 

Studying the code helps you learn how to implement the pattern. 

4. Choose names for pattern participants that are meaningful in the application context. 

The names for participants in design patterns are usually too abstract to appear directly in an 

application. Nevertheless, it's useful to incorporate the participant name into the name that appears in the 

application. That helps make the pattern more explicit in the implementation. 

5. Define the classes. 

Declare their interfaces, establish their inheritance relationships, and define the instance variables 

that represent data and object references. Identify existing classes in your application that the pattern will 

affect, and modify them accordingly. 

6. Define application-specific names for operations in the pattern. 

Here again, the names generally depend on the application. Use the responsibilities and 

collaborations associated with each operation as a guide. Also, be consistent in your naming conventions. 

7. Implement the operations to carry out the responsibilities and collaborations in the pattern. 

The Implementation section offers hints to guide you in the implementation. 
 

These are just guidelines to get you started. Over time we develop our own way of working with 

design patterns. No discussion of how to use design patterns would be complete without a few words on 

how not to use them. Design patterns should not be applied indiscriminately. Often they achieve 

flexibility and variability by introducing additional levels of indirection, and that can complicate a design 

and/or cost some performance. A design pattern should only be applied when the flexibility it affords is 

actually needed. The Consequences sections are most helpful when evaluating a pattern's benefits and 

liabilities. 



 Dept of CSE 

Object Oriented Analysis and Design 18 

 

 

 

8. Explain Design Patterns and its uses. 

In software engineering, a design pattern is a general repeatable solution to a commonly occurring 

problem in software design. A design pattern isn't a finished design that can be transformed directly into 

code. It is a description or template for how to solve a problem that can be used in many different 

situations. 

 

Uses of Design Patterns 

Design patterns can speed up the development process by providing tested, proven development 

paradigms. Effective software design requires considering issues that may not become visible until later 

in the implementation. Reusing design patterns helps to prevent subtle issues that can cause major 

problems and improves code readability for coders and architects familiar with the patterns. 

Often, people only understand how to apply certain software design techniques to certain problems. These 

techniques are difficult to apply to a broader range of problems. Design patterns provide general 

solutions, documented in a format that doesn't require specifics tied to a particular problem. 

In addition, patterns allow developers to communicate using well-known, well understood names for 

software interactions. Common design patterns can be improved over time, making them more robust 

than ad-hoc designs. 

 

Creational design patterns 

This design patterns is all about class instantiation. This pattern can be further divided into class-creation 

patterns and object-creational patterns. While class-creation patterns use inheritance effectively in the 

instantiation process, object-creation patterns use delegation effectively to get the job done. 
 

 

 Abstract Factory 

Creates an instance of several families of classes 

 Builder 

Separates object construction from its representation 

 Factory Method 

Creates an instance of several derived classes 

 Object Pool 

Avoid expensive acquisition and release of resources by recycling objects that are no longer in use 

 Prototype 

A fully initialized instance to be copied or cloned 

 Singleton 

A class of which only a single instance can exist 

http://sourcemaking.com/creational_patterns
http://sourcemaking.com/design_patterns/abstract_factory
http://sourcemaking.com/design_patterns/builder
http://sourcemaking.com/design_patterns/factory_method
http://sourcemaking.com/design_patterns/object_pool
http://sourcemaking.com/design_patterns/prototype
http://sourcemaking.com/design_patterns/singleton


 Dept of CSE 

Object Oriented Analysis and Design 19 

 

 

 

Structural design patterns 

This design patterns is all about Class and Object composition. Structural class-creation patterns use 

inheritance to compose interfaces. Structural object-patterns define ways to compose objects to obtain 

new functionality. 
 

 

 Adapter 

Match interfaces of different classes 

 Bridge 

Separates an object‘s interface from its implementation 

 Composite 

A tree structure of simple and composite objects 

 Decorator 

Add responsibilities to objects dynamically 

 Facade 

A single class that represents an entire subsystem 

 Flyweight 

A fine-grained instance used for efficient sharing 

  

Private Class Data 

Restricts accessor/mutator access 

 Proxy 

An object representing another object 

 

Behavioral design patterns 

This design patterns is all about Class's objects communication. Behavioral patterns are those patterns 
that are most specifically concerned with communication between objects. 

http://sourcemaking.com/design_patterns/adapter
http://sourcemaking.com/design_patterns/bridge
http://sourcemaking.com/design_patterns/composite
http://sourcemaking.com/design_patterns/decorator
http://sourcemaking.com/design_patterns/facade
http://sourcemaking.com/design_patterns/flyweight
http://sourcemaking.com/design_patterns/private_class_data
http://sourcemaking.com/design_patterns/proxy
http://sourcemaking.com/behavioral_patterns
http://sourcemaking.com/design_patterns/proxy


 Dept of CSE 

Object Oriented Analysis and Design 20 

 

 

 

 

 

 Chain of responsibility 

A way of passing a request between a chain of objects 

 Command 

Encapsulate a command request as an object 

 Interpreter 

A way to include language elements in a program 

 Iterator 

Sequentially access the elements of a collection 

 Mediator 

Defines simplified communication between classes 

 Memento 

Capture and restore an object's internal state 

 Null Object 

Designed to act as a default value of an object 

 Observer 

A way of notifying change to a number of classes 

  

State 

Alter an object's behavior when its state changes 

 Strategy 

Encapsulates an algorithm inside a class 

 Template method 

Defer the exact steps of an algorithm to a subclass 

 Visitor 

Defines a new operation to a class without change 

http://sourcemaking.com/design_patterns/chain_of_responsibility
http://sourcemaking.com/design_patterns/command
http://sourcemaking.com/design_patterns/interpreter
http://sourcemaking.com/design_patterns/iterator
http://sourcemaking.com/design_patterns/mediator
http://sourcemaking.com/design_patterns/memento
http://sourcemaking.com/design_patterns/null_object
http://sourcemaking.com/design_patterns/observer
http://sourcemaking.com/design_patterns/state
http://sourcemaking.com/design_patterns/strategy
http://sourcemaking.com/design_patterns/template_method
http://sourcemaking.com/design_patterns/visitor
http://sourcemaking.com/design_patterns/state


 Dept of CSE 

Object Oriented Analysis and Design 21 

 

 

 

9. Explain briefly about Creational Design Patterns with examples. 

Abstract Factory Design Pattern 

Intent 

 Provide an interface for creating families of related or dependent objects without specifying their 

concrete classes. 

 A hierarchy that encapsulates: many possible ―platforms‖, and the construction of a suite 

of ―products‖. 

 The new operator considered harmful. 

Problem 

If an application is to be portable, it needs to encapsulate platform dependencies. These ―platforms‖ 

might include: windowing system, operating system, database, etc. Too often, this encapsulatation is not 

engineered in advance, and lots of #ifdef case statements with options for all currently supported 

platforms begin to procreate like rabbits throughout the code. 

Discussion 

Provide a level of indirection that abstracts the creation of families of related or dependent objects 

without directly specifying their concrete classes. The ―factory‖ object has the responsibility for 

providing creation services for the entire platform family. Clients never create platform objects directly, 

they ask the factory to do that for them. 

This mechanism makes exchanging product families easy because the specific class of the factory object 

appears only once in the application - where it is instantiated. The application can wholesale replace the 

entire family of products simply by instantiating a different concrete instance of the abstract factory. 

Because the service provided by the factory object is so pervasive, it is routinely implemented as 

a Singleton. 

Structure 

The Abstract Factory defines a Factory Method per product. Each Factory Method encapsulates the new 

operator and the concrete, platform-specific, product classes. Each ―platform‖ is then modeled with a 

Factory derived class. 
 



 Dept of CSE 

Object Oriented Analysis and Design 22 

 

 

 

Example 

The purpose of the Abstract Factory is to provide an interface for creating families of related 

objects, without specifying concrete classes. This pattern is found in the sheet metal stamping equipment 

used in the manufacture of Japanese automobiles. The stamping equipment is an Abstract Factory which 

creates auto body parts. The same machinery is used to stamp right hand doors, left hand doors, right 

front fenders, left front fenders, hoods, etc. for different models of cars. Through the use of rollers to 

change the stamping dies, the concrete classes produced by the machinery can be changed within 

three minutes. 
 

Check list 

1. Decide if ―platform independence‖ and creation services are the current source of pain. 

2. Map out a matrix of ―platforms‖ versus ―products‖. 

3. Define a factory interface that consists of a factory method per product. 

4. Define a factory derived class for each platform that encapsulates all references to the 

new operator. 

5. The client should retire all references to new, and use the factory methods to create the 

product objects. 

Rules of thumb 

 Sometimes creational patterns are competitors: there are cases when either Prototype or Abstract 

Factory could be used profitably. At other times they are complementary: Abstract Factory might 

store a set of Prototypes from which to clone and return product objects, Builder can use one of 

the other patterns to implement which components get built. Abstract Factory, Builder, and 

Prototype can use Singleton in their implementation. 

 Abstract Factory, Builder, and Prototype define a factory object that‘s responsible for knowing 

and creating the class of product objects, and make it a parameter of the system. Abstract Factory 

has the factory object producing objects of several classes. Builder has the factory object building 

a complex product incrementally using a correspondingly complex protocol. Prototype has the 

factory object (aka prototype) building a product by copying a prototype object. 

 Abstract Factory classes are often implemented with Factory Methods, but they can also be 

implemented using Prototype. 

 Abstract Factory can be used as an alternative to Facade to hide platform-specific classes. 

 Builder focuses on constructing a complex object step by step. Abstract Factory emphasizes a 

family of product objects (either simple or complex). Builder returns the product as a final step, 

but as far as the Abstract Factory is concerned, the product gets returned immediately. 

 Often, designs start out using Factory Method and evolve toward Abstract Factory, Prototype, or 

Builder as the designer discovers where more flexibility is needed. 



 Dept of CSE 

Object Oriented Analysis and Design 23 

 

 

 

Builder Design Pattern 

Intent 

 Separate the construction of a complex object from its representation so that the same construction 
process can create different representations. 

 Parse a complex representation, create one of several targets. 

Problem 

An application needs to create the elements of a complex aggregate. The specification for the aggregate 

exists on secondary storage and one of many representations needs to be built in primary storage. 

Discussion 

Separate the algorithm for interpreting (i.e. reading and parsing) a stored persistence mechanism (e.g. 

RTF files) from the algorithm for building and representing one of many target products (e.g. ASCII, 

TeX, text widget). The focus/distinction is on creating complex aggregates. 

The ―director‖ invokes ―builder‖ services as it interprets the external format. The ―builder‖ creates part of 

the complex object each time it is called and maintains all intermediate state. When the product is 

finished, the client retrieves the result from the ―builder‖. 

Affords finer control over the construction process. Unlike creational patterns that construct products in 

one shot, the Builder pattern constructs the product step by step under the control of the ―director‖. 

Structure 

The Reader encapsulates the parsing of the common input. The Builder hierarchy makes possible the 

polymorphic creation of many peculiar representations or targets. 
 

Example 

The Builder pattern separates the construction of a complex object from its representation so that the 

same construction process can create different representations. This pattern is used by fast food 

restaurants to construct children‘s meals. Children‘s meals typically consist of a main item, a side item, a 

drink, and a toy (e.g., a hamburger, fries, Coke, and toy dinosaur). Note that there can be variation in the 

content of the children‘s meal, but the construction process is the same. Whether a customer orders a 

hamburger, cheeseburger, or chicken, the process is the same. The employee at the counter directs the 



 Dept of CSE 

Object Oriented Analysis and Design 24 

 

 

 

crew to assemble a main item, side item, and toy. These items are then placed in a bag. The drink is 
placed in a cup and remains outside of the bag. This same process is used at competing restaurants. 

 

 

Check list 

1. Decide if a common input and many possible representations (or outputs) is the problem at hand. 

2. Encapsulate the parsing of the common input in a Reader class. 

3. Design a standard protocol for creating all possible output representations. Capture the steps of 
this protocol in a Builder interface. 

4. Define a Builder derived class for each target representation. 

5. The client creates a Reader object and a Builder object, and registers the latter with the former. 

6. The client asks the Reader to ―construct‖. 

7. The client asks the Builder to return the result. 

Rules of thumb 

 Sometimes creational patterns are complementory: Builder can use one of the other patterns to 

implement which components get built. Abstract Factory, Builder, and Prototype can use 

Singleton in their implementations. 

 Builder focuses on constructing a complex object step by step. Abstract Factory emphasizes a 

family of product objects (either simple or complex). Builder returns the product as a final step, 

but as far as the Abstract Factory is concerned, the product gets returned immediately. 

 Builder often builds a Composite. 

 Often, designs start out using Factory Method (less complicated, more customizable, subclasses 
proliferate) and evolve toward Abstract Factory, Prototype, or Builder (more flexible, more 

complex) as the designer discovers where more flexibility is needed. 



 Dept of CSE 

Object Oriented Analysis and Design 25 

 

 

 

Factory Method Design Pattern 

Intent 

 Define an interface for creating an object, but let subclasses decide which class to instantiate. 
Factory Method lets a class defer instantiation to subclasses. 

 Defining a ―virtual‖ constructor. 

 The new operator considered harmful. 

Problem 

A framework needs to standardize the architectural model for a range of applications, but allow for 

individual applications to define their own domain objects and provide for their instantiation. 

Discussion 

Factory Method is to creating objects as Template Method is to implementing an algorithm. A superclass 

specifies all standard and generic behavior (using pure virtual ―placeholders‖ for creation steps), and then 

delegates the creation details to subclasses that are supplied by the client. 

Factory Method makes a design more customizable and only a little more complicated. Other design 

patterns require new classes, whereas Factory Method only requires a new operation. 

People often use Factory Method as the standard way to create objects; but it isn‘t necessary if: the class 

that‘s instantiated never changes, or instantiation takes place in an operation that subclasses can easily 

override (such as an initialization operation). 

Factory Method is similar to Abstract Factory but without the emphasis on families. 

Factory Methods are routinely specified by an architectural framework, and then implemented by the user 

of the framework. 

Structure 

The implementation of Factory Method discussed in the Gang of Four (below) largely overlaps with that 

of Abstract Factory. For that reason, the presentation in this chapter focuses on the approach that has 

become popular since. 

 

An increasingly popular definition of factory method is: a static method of a class that returns an object of 

that class‘ type. But unlike a constructor, the actual object it returns might be an instance of a subclass. 

Unlike a constructor, an existing object might be reused, instead of a new object created. Unlike a 

constructor,  factory  methods  can  have  different  and  more  descriptive  names  (e.g. 



 Dept of CSE 

Object Oriented Analysis and Design 26 

 

 

 

Color.make_RGB_color(float red, float green, float blue) and Color.make_HSB_color(float hue, float 
saturation, float brightness) 

 

 

The client is totally decoupled from the implementation details of derived classes. Polymorphic creation 

is now possible. 
 

Example 

The Factory Method defines an interface for creating objects, but lets subclasses decide which classes to 

instantiate. Injection molding presses demonstrate this pattern. Manufacturers of plastic toys process 

plastic molding powder, and inject the plastic into molds of the desired shapes. The class of toy (car, 

action figure, etc.) is determined by the mold. 

 

Check list 

1. If you have an inheritance hierarchy that exercises polymorphism, consider adding a polymorphic 

creation capability by defining a static factory method in the base class. 

2. Design the arguments to the factory method. What qualities or characteristics are necessary and 
sufficient to identify the correct derived class to instantiate? 



 Dept of CSE 

Object Oriented Analysis and Design 27 

 

 

 

3. Consider designing an internal ―object pool‖ that will allow objects to be reused instead of created 
from scratch. 

4. Consider making all constructors private or protected. 

Rules of thumb 

 Abstract Factory classes are often implemented with Factory Methods, but they can be 

implemented using Prototype. 

 Factory Methods are usually called within Template Methods. 

 Factory Method: creation through inheritance. Prototype: creation through delegation. 

 Often, designs start out using Factory Method (less complicated, more customizable, subclasses 

proliferate) and evolve toward Abstract Factory, Prototype, or Builder (more flexible, more 

complex) as the designer discovers where more flexibility is needed. 

 Prototype doesn‘t require subclassing, but it does require an Initialize operation. Factory Method 

requires subclassing, but doesn‘t require Initialize. 

 The advantage of a Factory Method is that it can return the same instance multiple times, or can 

return a subclass rather than an object of that exact type. 

 Some Factory Method advocates recommend that as a matter of language design (or failing that, 

as a matter of style) absolutely all constructors should be private or protected. It‘s no one else‘s 

business whether a class manufactures a new object or recycles an old one. 

 The new operator considered harmful. There is a difference between requesting an object and 

creating one. The new operator always creates an object, and fails to encapsulate object creation. 

A Factory Method enforces that encapsulation, and allows an object to be requested without 

inextricable coupling to the act of creation. 

 

 

Prototype Design Pattern 

Intent 

 Specify the kinds of objects to create using a prototypical instance, and create new objects by 

copying this prototype. 

 Co-opt one instance of a class for use as a breeder of all future instances. 

 The new operator considered harmful. 

Problem 

Application ―hard wires‖ the class of object to create in each ―new‖ expression. 

Discussion 

Declare an abstract base class that specifies a pure virtual ―clone‖ method, and, maintains a dictionary of 

all ―cloneable‖ concrete derived classes. Any class that needs a ―polymorphic constructor‖ capability: 

derives itself from the abstract base class, registers its prototypical instance, and implements the 

clone() operation. 

The client then, instead of writing code that invokes the ―new‖ operator on a hard-wired class name, calls 

a ―clone‖ operation on the abstract base class, supplying a string or enumerated data type that designates 
the particular concrete derived class desired. 



 Dept of CSE 

Object Oriented Analysis and Design 28 

 

 

 

Structure 

The Factory knows how to find the correct Prototype, and each Product knows how to spawn new 
instances of itself. 

 

Example 

The Prototype pattern specifies the kind of objects to create using a prototypical instance. Prototypes of 

new products are often built prior to full production, but in this example, the prototype is passive and does 

not participate in copying itself. The mitotic division of a cell - resulting in two identical cells - is an 

example of a prototype that plays an active role in copying itself and thus, demonstrates the Prototype 

pattern. When a cell splits, two cells of identical genotvpe result. In other words, the cell clones itself. 
 

Check list 

1. Add a clone() method to the existing ―product‖ hierarchy. 

2. Design a ―registry‖ that maintains a cache of prototypical objects. The registry could be 

encapsulated in a new Factory class, or in the base class of the ―product‖ hierarchy. 

3. Design a factory method that: may (or may not) accept arguments, finds the correct prototype 
object, calls clone() on that object, and returns the result. 

4. The client replaces all references to the new operator with calls to the factory method. 

Rules of thumb 

 Sometimes creational patterns are competitors: there are cases when either Prototype or Abstract 

Factory could be used properly. At other times they are complementory: Abstract Factory might 

store a set of Prototypes from which to clone and return product objects. Abstract Factory, 

Builder, and Prototype can use Singleton in their implementations. 



 Dept of CSE 

Object Oriented Analysis and Design 29 

 

 

 

 Abstract Factory classes are often implemented with Factory Methods, but they can be 
implemented using Prototype. 

 Factory Method: creation through inheritance. Protoype: creation through delegation. 

 Often, designs start out using Factory Method (less complicated, more customizable, subclasses 

proliferate) and evolve toward Abstract Factory, Protoype, or Builder (more flexible, more 

complex) as the designer discovers where more flexibility is needed. 

 Prototype doesn‘t require subclassing, but it does require an ―initialize‖ operation. Factory 

Method requires subclassing, but doesn‘t require Initialize. 

 Designs that make heavy use of the Composite and Decorator patterns often can benefit from 

Prototype as well. 

 Prototype co-opts one instance of a class for use as a breeder of all future instances. 

 Prototypes are useful when object initialization is expensive, and you anticipate few variations on 

the initialization parameters. In this context, Prototype can avoid expensive ―creation from 

scratch‖, and support cheap cloning of a pre-initialized prototype. 

 Prototype is unique among the other creational patterns in that it doesn‘t require a class – only an 

object. Object-oriented languages like Self and Omega that do away with classes completely rely 

on prototypes for creating new objects. 

 

 

Singleton Design Pattern 

Intent 

 Ensure a class has only one instance, and provide a global point of access to it. 

 Encapsulated ―just-in-time initialization‖ or ―initialization on first use‖. 

Problem 

Application needs one, and only one, instance of an object. Additionally, lazy initialization and global 

access are necessary. 

Discussion 

Make the class of the single instance object responsible for creation, initialization, access, and 

enforcement. Declare the instance as a private static data member. Provide a public static member 

function that encapsulates all initialization code, and provides access to the instance. 

The client calls the accessor function (using the class name and scope resolution operator) whenever a 
reference to the single instance is required. 

Singleton should be considered only if all three of the following criteria are satisfied: 

 Ownership of the single instance cannot be reasonably assigned 

 Lazy initialization is desirable 

 Global access is not otherwise provided for 

If ownership of the single instance, when and how initialization occurs, and global access are not issues, 

Singleton is not sufficiently interesting. 



 Dept of CSE 

Object Oriented Analysis and Design 30 

 

 

 

The Singleton pattern can be extended to support access to an application-specific number of instances. 

The ―static member function accessor‖ approach will not support subclassing of the Singleton class. If 
subclassing is desired, refer to the discussion in the book. 

Deleting a Singleton class/instance is a non-trivial design problem. See ―To Kill A Singleton‖ by John 

Vlissides for a discussion. 

Structure 
 

 

 

Make the class of the single instance responsible for access and ―initialization on first use‖. The single 

instance is a private static attribute. The accessor function is a public static method. 

 

 

Example 

The Singleton pattern ensures that a class has only one instance and provides a global point of access to 

that instance. It is named after the singleton set, which is defined to be a set containing one element. The 

office of the President of the United States is a Singleton. The United States Constitution specifies the 

means by which a president is elected, limits the term of office, and defines the order of succession. As a 

result, there can be at most one active president at any given time. Regardless of the personal identity of 

the active president, the title, ―The President of the United States‖ is a global point of access that 

identifies the person in the office. 

 

 

Check list 

1. Define a private static attribute in the ―single instance‖ class. 

2. Define a public staticaccessor function in the class. 

3. Do ―lazy initialization‖ (creation on first use) in the accessor function. 

4. Define all constructors to be protected or private. 

5. Clients may only use the accessor function to manipulate the Singleton. 

Rules of thumb 

 Abstract Factory, Builder, and Prototype can use Singleton in their implementation. 

 Facade objects are often Singletons because only one Facade object is required. 

http://sourcemaking.com/design_patterns/to_kill_a_singleton


 Dept of CSE 

Object Oriented Analysis and Design 31 

 

 

 

 State objects are often Singletons. 

 The advantage of Singleton over global variables is that you are absolutely sure of the number of 

instances when you use Singleton, and, you can change your mind and manage any number 

of instances. 

 The Singleton design pattern is one of the most inappropriately used patterns. Singletons are 

intended to be used when a class must have exactly one instance, no more, no less. Designers 

frequently use Singletons in a misguided attempt to replace global variables. A Singleton is, for 

intents and purposes, a global variable. The Singleton does not do away with the global; it merely 

renames it. 

 When is Singleton unnecessary? Short answer: most of the time. Long answer: when it‘s simpler 

to pass an object resource as a reference to the objects that need it, rather than letting objects 

access the resource globally. The real problem with Singletons is that they give you such a good 

excuse not to think carefully about the appropriate visibility of an object. Finding the right balance 

of exposure and protection for an object is critical for maintaining flexibility. 

 Our group had a bad habit of using global data, so I did a study group on Singleton. The next thing 

I know Singletons appeared everywhere and none of the problems related to global data went 

away. The answer to the global data question is not, ―Make it a Singleton.‖ The answer is, ―Why 

in the hell are you using global data?‖ Changing the name doesn‘t change the problem. In fact, it 

may make it worse because it gives you the opportunity to say, ―Well I‘m not doing that, I‘m 

doing this‖ – even though this and that are the same thing. 

10. Explain briefly about Structural Design Pattern with examples. 

Adapter Design Pattern 

Intent 

 Convert the interface of a class into another interface clients expect. Adapter lets classes work 

together that couldn‘t otherwise because of incompatible interfaces. 

 Wrap an existing class with a new interface. 

 Impedance match an old component to a new system 

Problem 

An ―off the shelf‖ component offers compelling functionality that you would like to reuse, but its ―view 

of the world‖ is not compatible with the philosophy and architecture of the system currently 

being developed. 

Discussion 

Reuse has always been painful and elusive. One reason has been the tribulation of designing something 

new, while reusing something old. There is always something not quite right between the old and the 

new. It may be physical dimensions or misalignment. It may be timing or synchronization. It may be 

unfortunate assumptions or competing standards. 

It is like the problem of inserting a new three-prong electrical plug in an old two-prong wall outlet – some 

kind of adapter or intermediary is necessary. 
 



 Dept of CSE 

Object Oriented Analysis and Design 32 

 

 

 

Adapter is about creating an intermediary abstraction that translates, or maps, the old component to the 

new system. Clients call methods on the Adapter object which redirects them into calls to the legacy 

component. This strategy can be implemented either with inheritance or with aggregation. 

Adapter functions as a wrapper or modifier of an existing class. It provides a different or translated view 
of that class. 

Structure 

Below, a legacy Rectangle component‘s display() method expects to receive ―x, y, w, h‖ parameters. But 

the client wants to pass ―upper left x and y‖ and ―lower right x and y‖. This incongruity can be reconciled 

by adding an additional level of indirection – i.e. an Adapter object. 
 

 

The Adapter could also be thought of as a ―wrapper‖. 
 

 

Example 

The Adapter pattern allows otherwise incompatible classes to work together by converting the interface of 

one class into an interface expected by the clients. Socket wrenches provide an example of the Adapter. A 

socket attaches to a ratchet, provided that the size of the drive is the same. Typical drive sizes in the 

United States are 1/2‖ and 1/4‖. Obviously, a 1/2‖ drive ratchet will not fit into a 1/4‖ drive socket unless 

an adapter is used. A 1/2‖ to 1/4‖ adapter has a 1/2‖ connection to fit on the 1/2‖ drive ratchet, and a 1/4‖ 

connection to fit in the 1/4‖ drive socket. 
 



 Dept of CSE 

Object Oriented Analysis and Design 33 

 

 

 

Check list 

1. Identify the players: the component(s) that want to be accommodated (i.e. the client), and the 
component that needs to adapt (i.e. the adaptee). 

2. Identify the interface that the client requires. 

3. Design a ―wrapper‖ class that can ―impedance match‖ the adaptee to the client. 

4. The adapter/wrapper class ―has a‖ instance of the adaptee class. 

5. The adapter/wrapper class ―maps‖ the client interface to the adaptee interface. 

6. The client uses (is coupled to) the new interface 

 

 

Bridge Design Pattern 

Intent 

 Decouple an abstraction from its implementation so that the two can vary independently. 

 Publish interface in an inheritance hierarchy, and bury implementation in its own 

inheritance hierarchy. 

 Beyond encapsulation, to insulation 

Problem 

―Hardening of the software arteries‖ has occurred by using subclassing of an abstract base class to 

provide alternative implementations. This locks in compile-time binding between interface and 

implementation. The abstraction and implementation cannot be independently extended or composed. 

Motivation 

Consider the domain of ―thread scheduling‖. 
 

 

There are two types of thread schedulers, and two types of operating systems or ―platforms‖. Given this 

approach to specialization, we have to define a class for each permutation of these two dimensions. If we 

add a new platform (say … Java‘s Virtual Machine), what would our hierarchy look like? 
 

 

What if we had three kinds of thread schedulers, and four kinds of platforms? What if we had five kinds 

of thread schedulers, and ten kinds of platforms? The number of classes we would have to define is the 

product of the number of scheduling schemes and the number of platforms. 



 Dept of CSE 

Object Oriented Analysis and Design 34 

 

 

 

The Bridge design pattern proposes refactoring this exponentially explosive inheritance hierarchy into 

two orthogonal hierarchies – one for platform-independent abstractions, and the other for platform- 

dependent implementations. 
 

 

Discussion 

Decompose the component‘s interface and implementation into orthogonal class hierarchies. The 

interface class contains a pointer to the abstract implementation class. This pointer is initialized with an 

instance of a concrete implementation class, but all subsequent interaction from the interface class to the 

implementation class is limited to the abstraction maintained in the implementation base class. The client 

interacts with the interface class, and it in turn ―delegates‖ all requests to the implementation class. 

The interface object is the ―handle‖ known and used by the client; while the implementation object, or 

―body‖, is safely encapsulated to ensure that it may continue to evolve, or be entirely replaced (or shared 
at run-time. 

Use the Bridge pattern when: 

 you want run-time binding of the implementation, 

 you have a proliferation of classes resulting from a coupled interface and 

numerous implementations, 

 you want to share an implementation among multiple objects, 
 you need to map orthogonal class hierarchies. 

Consequences include: 

 decoupling the object‘s interface, 

 improved extensibility (you can extend (i.e. subclass) the abstraction and implementation 

hierarchies independently), 

 hiding details from clients. 

Bridge is a synonym for the ―handle/body‖ idiom. This is a design mechanism that encapsulates an 

implementation class inside of an interface class. The former is the body, and the latter is the handle. The 

handle is viewed by the user as the actual class, but the work is done in the body. ―The handle/body class 

idiom may be used to decompose a complex abstraction into smaller, more manageable classes. The 

idiom may reflect the sharing of a single resource by multiple classes that control access to it (e.g. 

reference counting).‖ 

Structure 

The Client doesn‘t want to deal with platform-dependent details. The Bridge pattern encapsulates this 

complexity behind an abstraction ―wrapper‖. 

Bridge emphasizes identifying and decoupling ―interface‖ abstraction from ―implementation‖ abstraction. 



 Dept of CSE 

Object Oriented Analysis and Design 35 

 

 

 

 

 

Example 

The Bridge pattern decouples an abstraction from its implementation, so that the two can vary 

independently. A household switch controlling lights, ceiling fans, etc. is an example of the Bridge. The 

purpose of the switch is to turn a device on or off. The actual switch can be implemented as a pull chain, 

simple two position switch, or a variety of dimmer switches. 
 

 

Check list 

1. Decide if two orthogonal dimensions exist in the domain. These independent concepts could be: 

abstraction/platform, or domain/infrastructure, or front-end/back-end, or interface/implementation. 

2. Design the separation of concerns: what does the client want, and what do the platforms provide. 

3. Design a platform-oriented interface that is minimal, necessary, and sufficient. Its goal is to 

decouple the abstraction from the platform. 

4. Define a derived class of that interface for each platform. 

5. Create the abstraction base class that ―has a‖ platform object and delegates the platform-oriented 
functionality to it. 

6. Define specializations of the abstraction class if desired. 



 Dept of CSE 

Object Oriented Analysis and Design 36 

 

 

 

Decorator Design Pattern 

Intent 

 Attach additional responsibilities to an object dynamically. Decorators provide a flexible 
alternative to subclassing for extending functionality. 

 Client-specified embellishment of a core object by recursively wrapping it. 

 Wrapping a gift, putting it in a box, and wrapping the box. 

Problem 

You want to add behavior or state to individual objects at run-time. Inheritance is not feasible because it 

is static and applies to an entire class. 

Discussion 

Suppose you are working on a user interface toolkit and you wish to support adding borders and scroll 

bars to windows. You could define an inheritance hierarchy like … 
 

 

 

But the Decorator pattern suggests giving the client the ability to specify whatever combination of 

―features‖ is desired. 

Widget* aWidget = new BorderDecorator( 

newHorizontalScrollBarDecorator( 

newVerticalScrollBarDecorator( 

new Window( 80, 24 )))); 

aWidget->draw(); 

This flexibility can be achieved with the following design 
 



 Dept of CSE 

Object Oriented Analysis and Design 37 

 

 

 

Another example of cascading (or chaining) features together to produce a custom object might look 
like … 

Stream* aStream = new CompressingStream( 

new ASCII7Stream( 

newFileStream( "fileName.dat" ))); 

aStream->putString( "Hello world" ); 

The solution to this class of problems involves encapsulating the original object inside an abstract 

wrapper interface. Both the decorator objects and the core object inherit from this abstract interface. The 

interface uses recursive composition to allow an unlimited number of decorator ―layers‖ to be added to 

each core object. 

Note that this pattern allows responsibilities to be added to an object, not methods to an object‘s interface. 

The interface presented to the client must remain constant as successive layers are specified. 

Also note that the core object‘s identity has now been ―hidden‖ inside of a decorator object. Trying to 

access the core object directly is now a problem. 

Structure 

The client is always interested in CoreFunctionality.doThis(). The client may, or may not, be interested in 

OptionalOne.doThis() and OptionalTwo.doThis(). Each of these classes always delegate to the Decorator 
base class, and that class always delegates to the contained ―wrappee‖ object. 

 

 

Example 

The Decorator attaches additional responsibilities to an object dynamically. The ornaments that are added 

to pine or fir trees are examples of Decorators. Lights, garland, candy canes, glass ornaments, etc., can be 

added to a tree to give it a festive look. The ornaments do not change the tree itself which is recognizable 

as a Christmas tree regardless of particular ornaments used. As an example of additional functionality, the 

addition of lights allows one to ―light up‖ a Christmas tree. 

Although paintings can be hung on a wall with or without frames, frames are often added, and it is the 

frame which is actually hung on the wall. Prior to hanging, the paintings may be matted and framed, with 

the painting, matting, and frame forming a single visual component. 



 Dept of CSE 

Object Oriented Analysis and Design 38 

 

 

 

 

 

Check list 

1. Ensure the context is: a single core (or non-optional) component, several optional embellishments 

or wrappers, and an interface that is common to all. 

2. Create a ―Lowest Common Denominator‖ interface that makes all classes interchangeable. 

3. Create a second level base class (Decorator) to support the optional wrapper classes. 

4. The Core class and Decorator class inherit from the LCD interface. 

5. The Decorator class declares a composition relationship to the LCD interface, and this data 

member is initialized in its constructor. 

6. The Decorator class delegates to the LCD object. 

7. Define a Decorator derived class for each optional embellishment. 

8. Decorator derived classes implement their wrapper functionality - and - delegate to the Decorator 

base class. 

9. The client configures the type and ordering of Core and Decorator objects. 

 

 

Composite Design Pattern 

Intent 

 Compose objects into tree structures to represent whole-part hierarchies. Composite lets clients 
treat individual objects and compositions of objects uniformly. 

 Recursive composition 

 ―Directories contain entries, each of which could be a directory.‖ 

 1-to-many ―has a‖ up the ―is a‖ hierarchy 

Problem 

Application needs to manipulate a hierarchical collection of ―primitive‖ and ―composite‖ objects. 

Processing of a primitive object is handled one way, and processing of a composite object is handled 

differently. Having to query the ―type‖ of each object before attempting to process it is not desirable. 

Discussion 

Define an abstract base class (Component) that specifies the behavior that needs to be exercised 

uniformly across all primitive and composite objects. Subclass the Primitive and Composite classes off of 



 Dept of CSE 

Object Oriented Analysis and Design 39 

 

 

 

the Component class. Each Composite object ―couples‖ itself only to the abstract type Component as it 
manages its ―children‖. 

Use this pattern whenever you have ―composites that contain components, each of which could be 

a composite‖. 

Child management methods [e.g. addChild(), removeChild()] should normally be defined in the 

Composite class. Unfortunately, the desire to treat Primitives and Composites uniformly requires that 

these methods be moved to the abstract Component class. See the ―Opinions‖ section below for a 

discussion of ―safety‖ versus ―transparency‖ issues. 

Structure 

Composites that contain Components, each of which could be a Composite. 
 

 

Menus that contain menu items, each of which could be a menu. 

Row-column GUI layout managers that contain widgets, each of which could be a row-column GUI 

layout manager. 

Directories that contain files, each of which could be a directory. 

Containers that contain Elements, each of which could be a Container. 

Example 

The Composite composes objects into tree structures and lets clients treat individual objects and 

compositions uniformly. Although the example is abstract, arithmetic expressions are Composites. An 

arithmetic expression consists of an operand, an operator (+ - * /), and another operand. The operand can 

be a number, or another arithmetic expresssion. Thus, 2 + 3 and (2 + 3) + (4 * 6) are both 

valid expressions. 
 



 Dept of CSE 

Object Oriented Analysis and Design 40 

 

 

 

Check list 

1. Ensure that your problem is about representing ―whole-part‖ hierarchical relationships. 

2. Consider the heuristic, ―Containers that contain containees, each of which could be a container.‖ 

For example, ―Assemblies that contain components, each of which could be an assembly.‖ Divide 

your domain concepts into container classes, and containee classes. 

3. Create a ―lowest common denominator‖ interface that makes your containers and containees 

interchangeable. It should specify the behavior that needs to be exercised uniformly across all 

containee and container objects. 

4. All container and containee classes declare an ―is a‖ relationship to the interface. 

5. All container classes declare a one-to-many ―has a‖ relationship to the interface. 

6. Container classes leverage polymorphism to delegate to their containee objects. 

7. Child management methods [e.g. addChild(), removeChild()] should normally be defined in the 

Composite class. Unfortunately, the desire to treat Leaf and Composite objects uniformly may 

require that these methods be promoted to the abstract Component class. See the Gang of Four for 

a discussion of these ―safety‖ versus ―transparency‖ trade-offs. 

Rules of thumb 

 Composite and Decorator have similar structure diagrams, reflecting the fact that both rely on 

recursive composition to organize an open-ended number of objects. 

 Composite can be traversed with Iterator. Visitor can apply an operation over a Composite. 

Composite could use Chain of Responsibility to let components access global properties through 

their parent. It could also use Decorator to override these properties on parts of the composition. It 

could use Observer to tie one object structure to another and State to let a component change its 

behavior as its state changes. 

 Composite can let you compose a Mediator out of smaller pieces through recursive composition. 

 Decorator is designed to let you add responsibilities to objects without subclassing. Composite‘s 

focus is not on embellishment but on representation. These intents are distinct but complementary. 

Consequently, Composite and Decorator are often used in concert. 

 Flyweight is often combined with Composite to implement shared leaf nodes. 

Opinions 

The whole point of the Composite pattern is that the Composite can be treated atomically, just like a leaf. 

If you want to provide an Iterator protocol, fine, but I think that is outside the pattern itself. At the heart of 

this pattern is the ability for a client to perform operations on an object without needing to know that 

there are many objects inside. 

Being able to treat a heterogeneous collection of objects atomically (or transparently) requires that the 
―child management‖ interface be defined at the root of the Composite class hierarchy (the abstract 

Component class). However, this choice costs you safety, because clients may try to do meaningless 

things like add and remove objects from leaf objects. On the other hand, if you ―design for safety‖, the 

child management interface is declared in the Composite class, and you lose transparency because leaves 

and Composites now have different interfaces. 

Smalltalk implementations of the Composite pattern usually do not have the interface for managing the 

components in the Component interface, but in the Composite interface. C++ implementations tend to put 



 Dept of CSE 

Object Oriented Analysis and Design 41 

 

 

 

it in the Component interface. This is an extremely interesting fact, and one that I often ponder. I can 
offer theories to explain it, but nobody knows for sure why it is true. 

My Component classes do not know that Composites exist. They provide no help for navigating 

Composites, nor any help for altering the contents of a Composite. This is because I would like the base 

class (and all its derivatives) to be reusable in contexts that do not require Composites. When given a base 

class pointer, if I absolutely need to know whether or not it is a Composite, I will use dynamic_cast to 

figure this out. In those cases where dynamic_cast is too expensive, I will use a Visitor. 

Common complaint: ―if I push the Composite interface down into the Composite class, how am I going to 

enumerate (i.e. traverse) a complex structure?‖ My answer is that when I have behaviors which apply to 

hierarchies like the one presented in the Composite pattern, I typically use Visitor, so enumeration isn‘t a 

problem - the Visitor knows in each case, exactly what kind of object it‘s dealing with. The Visitor 

doesn‘t need every object to provide an enumeration interface. 

Composite doesn‘t force you to treat all Components as Composites. It merely tells you to put all 

operations that you want to treat ―uniformly‖ in the Component class. If add, remove, and similar 

operations cannot, or must not, be treated uniformly, then do not put them in the Component base class. 

Remember, by the way, that each pattern‘s structure diagram doesn‘t define the pattern; it merely depicts 

what in our experience is a common realization thereof. Just because Composite‘s structure diagram 

shows child management operations in the Component base class doesn‘t mean all implementations of the 

pattern must do the same. 

 

 

Facade Design Pattern 

Intent 

 Provide a unified interface to a set of interfaces in a subsystem. Facade defines a higher-level 

interface that makes the subsystem easier to use. 

 Wrap a complicated subsystem with a simpler interface. 

Problem 

A segment of the client community needs a simplified interface to the overall functionality of a 

complex subsystem. 

Discussion 

Facade discusses encapsulating a complex subsystem within a single interface object. This reduces the 

learning curve necessary to successfully leverage the subsystem. It also promotes decoupling the 

subsystem from its potentially many clients. On the other hand, if the Facade is the only access point for 

the subsystem, it will limit the features and flexibility that ―power users‖ may need. 

The Facade object should be a fairly simple advocate or facilitator. It should not become an all-knowing 

oracle or ―god‖ object. 

Structure 

Facade takes a ―riddle wrapped in an enigma shrouded in mystery‖, and interjects a wrapper that tames 

the amorphous and inscrutable mass of software. 



 Dept of CSE 

Object Oriented Analysis and Design 42 

 

 

 

 

 

SubsystemOne and SubsystemThree do not interact with the internal components of SubsystemTwo. 

They use the SubsystemTwoWrapper ―facade‖ (i.e. the higher level abstraction). 
 

 

Example 

The Facade defines a unified, higher level interface to a subsystem that makes it easier to use. Consumers 

encounter a Facade when ordering from a catalog. The consumer calls one number and speaks with a 

customer service representative. The customer service representative acts as a Facade, providing an 

interface to the order fulfillment department, the billing department, and the shipping department. 
 



 Dept of CSE 

Object Oriented Analysis and Design 43 

 

 

 

Check list 

1. Identify a simpler, unified interface for the subsystem or component. 

2. Design a ‗wrapper‘ class that encapsulates the subsystem. 

3. The facade/wrapper captures the complexity and collaborations of the component, and delegates 

to the appropriate methods. 

4. The client uses (is coupled to) the Facade only. 

5. Consider whether additional Facades would add value. 

Rules of thumb 

 Facade defines a new interface, whereas Adapter uses an old interface. Remember that Adapter 

makes two existing interfaces work together as opposed to defining an entirely new one. 

 Whereas Flyweight shows how to make lots of little objects, Facade shows how to make a single 

object represent an entire subsystem. 

 Mediator is similar to Facade in that it abstracts functionality of existing classes. Mediator 

abstracts/centralizes arbitrary communications between colleague objects. It routinely ―adds 

value‖, and it is known/referenced by the colleague objects. In contrast, Facade defines a simpler 

interface to a subsystem, it doesn‘t add new functionality, and it is not known by the 

subsystem classes. 

 Abstract Factory can be used as an alternative to Facade to hide platform-specific classes. 

 Facade objects are often Singletons because only one Facade object is required. 

 Adapter and Facade are both wrappers; but they are different kinds of wrappers. The intent of 

Facade is to produce a simpler interface, and the intent of Adapter is to design to an existing 

interface. While Facade routinely wraps multiple objects and Adapter wraps a single object; 

Facade could front-end a single complex object and Adapter could wrap several legacy objects. 

Question: So the way to tell the difference between the Adapter pattern and the Facade pattern is that the 

Adapter wraps one class and the Facade may represent many classes? 

Answer: No! Remember, the Adapter pattern changes the interface of one or more classes into one 

interface that a client is expecting. While most textbook examples show the adapter adapting one class, 

you may need to adapt many classes to provide the interface a client is coded to. Likewise, a Facade may 

provide a simplified interface to a single class with a very complex interface. The difference between the 

two is not in terms of how many classes they ―wrap‖, it is in their intent. 

 

 

Flyweight Design Pattern 

Intent 

 Use sharing to support large numbers of fine-grained objects efficiently. 

 The Motif GUI strategy of replacing heavy-weight widgets with light-weight gadgets. 

Problem 

Designing objects down to the lowest levels of system ―granularity‖ provides optimal flexibility, but can 

be unacceptably expensive in terms of performance and memory usage. 



 Dept of CSE 

Object Oriented Analysis and Design 44 

 

 

 

Discussion 

The Flyweight pattern describes how to share objects to allow their use at fine granularities without 

prohibitive cost. Each ―flyweight‖ object is divided into two pieces: the state-dependent (extrinsic) part, 

and the state-independent (intrinsic) part. Intrinsic state is stored (shared) in the Flyweight object. 

Extrinsic state is stored or computed by client objects, and passed to the Flyweight when its operations 

are invoked. 

An illustration of this approach would be Motif widgets that have been re-engineered as light-weight 

gadgets. Whereas widgets are ―intelligent‖ enough to stand on their own; gadgets exist in a dependent 

relationship with their parent layout manager widget. Each layout manager provides context-dependent 

event handling, real estate management, and resource services to its flyweight gadgets, and each gadget is 

only responsible for context-independent state and behavior. 

Structure 

Flyweights are stored in a Factory‘s repository. The client restrains herself from creating Flyweights 

directly, and requests them from the Factory. Each Flyweight cannot stand on its own. Any attributes that 

would make sharing impossible must be supplied by the client whenever a request is made of the 

Flyweight. If the context lends itself to ―economy of scale‖ (i.e. the client can easily compute or look-up 

the necessary attributes), then the Flyweight pattern offers appropriate leverage. 
 

The Ant, Locust, and Cockroach classes can be ―light-weight‖ because their instance-specific state has 

been de-encapsulated, or externalized, and must be supplied by the client. 
 

 

Example 

The Flyweight uses sharing to support large numbers of objects efficiently. The public switched 

telephone network is an example of a Flyweight. There are several resources such as dial tone generators, 

ringing generators, and digit receivers that must be shared between all subscribers. A subscriber is 

unaware of how many resources are in the pool when he or she lifts the handset to make a call. All that 

matters to subscribers is that a dial tone is provided, digits are received, and the call is completed. 



 Dept of CSE 

Object Oriented Analysis and Design 45 

 

 

 

 

 

Check list 

1. Ensure that object overhead is an issue needing attention, and, the client of the class is able and 

willing to absorb responsibility realignment. 

2. Divide the target class‘s state into: shareable (intrinsic) state, and non-shareable (extrinsic) state. 

3. Remove the non-shareable state from the class attributes, and add it the calling argument list of 

affected methods. 

4. Create a Factory that can cache and reuse existing class instances. 

5. The client must use the Factory instead of the new operator to request objects. 

6. The client (or a third party) must look-up or compute the non-shareable state, and supply that state 
to class methods. 

Rules of thumb 

 Whereas Flyweight shows how to make lots of little objects, Facade shows how to make a single 

object represent an entire subsystem. 

 Flyweight is often combined with Composite to implement shared leaf nodes. 

 Terminal symbols within Interpreter‘s abstract syntax tree can be shared with Flyweight. 

 Flyweight explains when and how State objects can be shared. 

 

 

Private Class Data 

Intent 

 Control write access to class attributes 

 Separate data from methods that use it 

 Encapsulate class data initialization 

 Providing new type of final - final after constructor 

Problem 

A class may expose its attributes (class variables) to manipulation when manipulation is no longer 

desirable, e.g. after construction. Using the private class data design pattern prevents that undesirable 

manipulation. 



 Dept of CSE 

Object Oriented Analysis and Design 46 

 

 

 

A class may have one-time mutable attributes that cannot be declared final. Using this design pattern 
allows one-time setting of those class attributes. 

The motivation for this design pattern comes from the design goal of protecting class state by minimizing 

the visibility of its attributes (data). 

Discussion 

The private class data design pattern seeks to reduce exposure of attributes by limiting their visibility. 

It reduces the number of class attributes by encapsulating them in single Data object. It allows the class 

designer to remove write privilege of attributes that are intended to be set only during construction, even 

from methods of the target class. 

Structure 

The private class data design pattern solves the problems above by extracting a data class for the target 

class and giving the target class instance an instance of the extracted data class. 
 

Check list 

1. Create data class. Move to data class all attributes that need hiding. 

2. Create in main class instance of data class. 

3. Main class must initialize data class through the data class's constructor. 

4. Expose each attribute (variable or property) of data class through a getter. 

5. Expose each attribute that will change in further through a setter. 



 Dept of CSE 

Object Oriented Analysis and Design 47 

 

 

 

Proxy Design Pattern 

Intent 

 Provide a surrogate or placeholder for another object to control access to it. 

 Use an extra level of indirection to support distributed, controlled, or intelligent access. 

 Add a wrapper and delegation to protect the real component from undue complexity. 

Problem 

You need to support resource-hungry objects, and you do not want to instantiate such objects unless and 

until they are actually requested by the client. 

Discussion 

Design a surrogate, or proxy, object that: instantiates the real object the first time the client makes a 

request of the proxy, remembers the identity of this real object, and forwards the instigating request to 

this real object. Then all subsequent requests are simply forwarded directly to the encapsulated 

real object. 

There are four common situations in which the Proxy pattern is applicable. 

1. A virtual proxy is a placeholder for ―expensive to create‖ objects. The real object is only created 

when a client first requests/accesses the object. 

2. A remote proxy provides a local representative for an object that resides in a different address 

space. This is what the ―stub‖ code in RPC and CORBA provides. 

3. A protective proxy controls access to a sensitive master object. The ―surrogate‖ object checks that 

the caller has the access permissions required prior to forwarding the request. 

4. A smart proxy interposes additional actions when an object is accessed. Typical uses include: 

o Counting the number of references to the real object so that it can be freed automatically 
when there are no more references (aka smart pointer), 

o Loading a persistent object into memory when it‘s first referenced, 

o Checking that the real object is locked before it is accessed to ensure that no other object 
can change it. 

Structure 

By defining a Subject interface, the presence of the Proxy object standing in place of the RealSubject is 

transparent to the client. 
 



 Dept of CSE 

Object Oriented Analysis and Design 48 

 

 

 

Example 

The Proxy provides a surrogate or place holder to provide access to an object. A check or bank draft is a 

proxy for funds in an account. A check can be used in place of cash for making purchases and ultimately 

controls access to cash in the issuer‘s account. 
 

 

Check list 

1. Identify the leverage or ―aspect‖ that is best implemented as a wrapper or surrogate. 

2. Define an interface that will make the proxy and the original component interchangeable. 

3. Consider defining a Factory that can encapsulate the decision of whether a proxy or original 

object is desirable. 

4. The wrapper class holds a pointer to the real class and implements the interface. 

5. The pointer may be initialized at construction, or on first use. 

6. Each wrapper method contributes its leverage, and delegates to the wrappee object. 

Rules of thumb 

 Adapter provides a different interface to its subject. Proxy provides the same interface. Decorator 

provides an enhanced interface. 

 Decorator and Proxy have different purposes but similar structures. Both describe how to provide 

a level of indirection to another object, and the implementations keep a reference to the object to 

which they forward requests. 

11. Explain briefly Behavioral Design Pattern with examples 

Chain of Responsibility 

Intent 

 Avoid coupling the sender of a request to its receiver by giving more than one object a chance to 

handle the request. Chain the receiving objects and pass the request along the chain until an object 

handles it. 

 Launch-and-leave requests with a single processing pipeline that contains many possible handlers. 

 An object-oriented linked list with recursive traversal. 

Problem 

There is a potentially variable number of ―handler‖ or ―processing element‖ or ―node‖ objects, and a 

stream of requests that must be handled. Need to efficiently process the requests without hard-wiring 

handler relationships and precedence, or request-to-handler mappings. 



 Dept of CSE 

Object Oriented Analysis and Design 49 

 

 

 

 

 

Discussion 

Encapsulate the processing elements inside a ―pipeline‖ abstraction; and have clients ―launch and leave‖ 

their requests at the entrance to the pipeline. 
 

 

The pattern chains the receiving objects together, and then passes any request messages from object to 

object until it reaches an object capable of handling the message. The number and type of handler objects 

isn‘t known a priori, they can be configured dynamically. The chaining mechanism uses recursive 

composition to allow an unlimited number of handlers to be linked. 

Chain of Responsibility simplifies object interconnections. Instead of senders and receivers maintaining 

references to all candidate receivers, each sender keeps a single reference to the head of the chain, and 

each receiver keeps a single reference to its immediate successor in the chain. 

Make sure there exists a ―safety net‖ to ―catch‖ any requests which go unhandled. 

Do not use Chain of Responsibility when each request is only handled by one handler, or, when the client 

object knows which service object should handle the request. 

Structure 

The derived classes know how to satisfy Client requests. If the ―current‖ object is not available or 

sufficient, then it delegates to the base class, which delegates to the ―next‖ object, and the circle of 

life continues. 
 



 Dept of CSE 

Object Oriented Analysis and Design 50 

 

 

 

Multiple handlers could contribute to the handling of each request. The request can be passed down the 
entire length of the chain, with the last link being careful not to delegate to a ―null next‖. 

Example 

The Chain of Responsibility pattern avoids coupling the sender of a request to the receiver by giving 

more than one object a chance to handle the request. ATM use the Chain of Responsibility in money 

giving mechanism. 
 

 

Check list 

1. The base class maintains a ―next‖ pointer. 

2. Each derived class implements its contribution for handling the request. 

3. If the request needs to be ―passed on‖, then the derived class ―calls back‖ to the base class, which 

delegates to the ―next‖ pointer. 

4. The client (or some third party) creates and links the chain (which may include a link from the last 

node to the root node). 

5. The client ―launches and leaves‖ each request with the root of the chain. 

6. Recursive delegation produces the illusion of magic. 

Rules of thumb 

 Chain of Responsibility, Command, Mediator, and Observer, address how you can decouple 

senders and receivers, but with different trade-offs. Chain of Responsibility passes a sender 

request along a chain of potential receivers. 

 Chain of Responsibility can use Command to represent requests as objects. 

 Chain of Responsibility is often applied in conjunction with Composite. There, a component‘s 

parent can act as its successor. 



 Dept of CSE 

Object Oriented Analysis and Design 51 

 

 

 

Chain of Responsibility 

Intent 

 Avoid coupling the sender of a request to its receiver by giving more than one object a chance to 

handle the request. Chain the receiving objects and pass the request along the chain until an object 

handles it. 

 Launch-and-leave requests with a single processing pipeline that contains many possible handlers. 

 An object-oriented linked list with recursive traversal. 

Problem 

There is a potentially variable number of ―handler‖ or ―processing element‖ or ―node‖ objects, and a 

stream of requests that must be handled. Need to efficiently process the requests without hard-wiring 

handler relationships and precedence, or request-to-handler mappings. 
 

 

Discussion 

Encapsulate the processing elements inside a ―pipeline‖ abstraction; and have clients ―launch and leave‖ 

their requests at the entrance to the pipeline. 
 

 

The pattern chains the receiving objects together, and then passes any request messages from object to 

object until it reaches an object capable of handling the message. The number and type of handler objects 

isn‘t known a priori, they can be configured dynamically. The chaining mechanism uses recursive 

composition to allow an unlimited number of handlers to be linked. 

Chain of Responsibility simplifies object interconnections. Instead of senders and receivers maintaining 

references to all candidate receivers, each sender keeps a single reference to the head of the chain, and 

each receiver keeps a single reference to its immediate successor in the chain. 

Make sure there exists a ―safety net‖ to ―catch‖ any requests which go unhandled. 

Do not use Chain of Responsibility when each request is only handled by one handler, or, when the client 

object knows which service object should handle the request. 



 Dept of CSE 

Object Oriented Analysis and Design 52 

 

 

 

Structure 

The derived classes know how to satisfy Client requests. If the ―current‖ object is not available or 

sufficient, then it delegates to the base class, which delegates to the ―next‖ object, and the circle of 

life continues. 
 

 

Multiple handlers could contribute to the handling of each request. The request can be passed down the 

entire length of the chain, with the last link being careful not to delegate to a ―null next‖. 

Example 

The Chain of Responsibility pattern avoids coupling the sender of a request to the receiver by giving 

more than one object a chance to handle the request. ATM use the Chain of Responsibility in money 

giving mechanism. 
 

 

Check list 

1. The base class maintains a ―next‖ pointer. 

2. Each derived class implements its contribution for handling the request. 

3. If the request needs to be ―passed on‖, then the derived class ―calls back‖ to the base class, which 

delegates to the ―next‖ pointer. 

4. The client (or some third party) creates and links the chain (which may include a link from the last 

node to the root node). 

5. The client ―launches and leaves‖ each request with the root of the chain. 

6. Recursive delegation produces the illusion of magic. 



 Dept of CSE 

Object Oriented Analysis and Design 53 

 

 

 

Rules of thumb 

 Chain of Responsibility, Command, Mediator, and Observer, address how you can decouple 

senders and receivers, but with different trade-offs. Chain of Responsibility passes a sender 

request along a chain of potential receivers. 

 Chain of Responsibility can use Command to represent requests as objects. 

 Chain of Responsibility is often applied in conjunction with Composite. There, a component‘s 

parent can act as its successor. 

 

 

Command Design Pattern 

Intent 

 Encapsulate a request as an object, thereby letting you parameterize clients with different requests, 
queue or log requests, and support undoable operations. 

 Promote ―invocation of a method on an object‖ to full object status 

 An object-oriented callback 

Problem 

Need to issue requests to objects without knowing anything about the operation being requested or the 

receiver of the request. 

Discussion 

Command decouples the object that invokes the operation from the one that knows how to perform it. To 

achieve this separation, the designer creates an abstract base class that maps a receiver (an object) with an 

action (a pointer to a member function). The base class contains an execute() method that simply calls the 

action on the receiver. 

All clients of Command objects treat each object as a ―black box‖ by simply invoking the object‘s virtual 

execute() method whenever the client requires the object‘s ―service‖. 

A Command class holds some subset of the following: an object, a method to be applied to the object, and 

the arguments to be passed when the method is applied. The Command‘s ―execute‖ method then causes 

the pieces to come together. 

Sequences of Command objects can be assembled into composite (or macro) commands. 

Structure 

The client that creates a command is not the same client that executes it. This separation provides 

flexibility in the timing and sequencing of commands. Materializing commands as objects means they can 

be passed, staged, shared, loaded in a table, and otherwise instrumented or manipulated like any 

other object. 



 Dept of CSE 

Object Oriented Analysis and Design 54 

 

 

 

 

 

Command objects can be thought of as ―tokens‖ that are created by one client that knows what need to be 

done, and passed to another client that has the resources for doing it. 

Example 

The Command pattern allows requests to be encapsulated as objects, thereby allowing clients to be 

parameterized with different requests. The ―check‖ at a diner is an example of a Command pattern. The 

waiter or waitress takes an order or command from a customer and encapsulates that order by writing it  

on the check. The order is then queued for a short order cook. Note that the pad of ―checks‖ used by each 

waiter is not dependent on the menu, and therefore they can support commands to cook many 

different items. 
 

 

Check list 

1. Define a Command interface with a method signature like execute(). 

2. Create one or more derived classes that encapsulate some subset of the following: a ―receiver‖ 

object, the method to invoke, the arguments to pass. 

3. Instantiate a Command object for each deferred execution request. 

4. Pass the Command object from the creator (aka sender) to the invoker (aka receiver). 

5. The invoker decides when to execute(). 

Rules of thumb 

 Chain of Responsibility, Command, Mediator, and Observer, address how you can decouple 

senders and receivers, but with different trade-offs. Command normally specifies a sender- 

receiver connection with a subclass. 



 Dept of CSE 

Object Oriented Analysis and Design 55 

 

 

 

 Chain of Responsibility can use Command to represent requests as objects. 

 Command and Memento act as magic tokens to be passed around and invoked at a later time. In 

Command, the token represents a request; in Memento, it represents the internal state of an object 

at a particular time. Polymorphism is important to Command, but not to Memento because its 

interface is so narrow that a memento can only be passed as a value. 

 Command can use Memento to maintain the state required for an undo operation. 

 MacroCommands can be implemented with Composite. 

 A Command that must be copied before being placed on a history list acts as a Prototype. 

 Two important aspects of the Command pattern: interface separation (the invoker is isolated from 

the receiver), time separation (stores a ready-to-go processing request that‘s to be stated later). 

Interpreter Design Pattern 

Intent 

 Given a language, define a representation for its grammar along with an interpreter that uses the 

representation to interpret sentences in the language. 

 Map a domain to a language, the language to a grammar, and the grammar to a hierarchical 

object-oriented design. 

Problem 

A class of problems occurs repeatedly in a well-defined and well-understood domain. If the domain were 

characterized with a ―language‖, then problems could be easily solved with an interpretation ―engine‖. 

Discussion 

The Interpreter pattern discusses: defining a domain language (i.e. problem characterization) as a simple 

language grammar, representing domain rules as language sentences, and interpreting these sentences to 

solve the problem. The pattern uses a class to represent each grammar rule. And since grammars are 

usually hierarchical in structure, an inheritance hierarchy of rule classes maps nicely. 

An abstract base class specifies the method interpret(). Each concrete subclass implements interpret() by 

accepting (as an argument) the current state of the language stream, and adding its contribution to the 

problem solving process. 

Structure 

Interpreter suggests modeling the domain with a recursive grammar. Each rule in the grammar is either a 

‗composite‘ (a rule that references other rules) or a terminal (a leaf node in a tree structure). Interpreter 

relies on the recursive traversal of the Composite pattern to interpret the ‗sentences‘ it is asked to process. 
 



 Dept of CSE 

Object Oriented Analysis and Design 56 

 

 

 

Example 

The Intepreter pattern defines a grammatical representation for a language and an interpreter to interpret 

the grammar. Musicians are examples of Interpreters. The pitch of a sound and its duration can be 

represented in musical notation on a staff. This notation provides the language of music. Musicians 

playing the music from the score are able to reproduce the original pitch and duration of each 

sound represented. 
 

 

Check list 

1. Decide if a ―little language‖ offers a justifiable return on investment. 

2. Define a grammar for the language. 

3. Map each production in the grammar to a class. 

4. Organize the suite of classes into the structure of the Composite pattern. 

5. Define an interpret(Context) method in the Composite hierarchy. 

6. The Context object encapsulates the current state of the input and output as the former is parsed 

and the latter is accumulated. It is manipulated by each grammar class as the ―interpreting‖ 

process transforms the input into the output. 

Rules of thumb 

 Considered in its most general form (i.e. an operation distributed over a class hierarchy based on 

the Composite pattern), nearly every use of the Composite pattern will also contain the Interpreter 

pattern. But the Interpreter pattern should be reserved for those cases in which you want to think 

of this class hierarchy as defining a language. 

 Interpreter can use State to define parsing contexts. 

 The abstract syntax tree of Interpreter is a Composite (therefore Iterator and Visitor are 

also applicable). 

 Terminal symbols within Interpreter‘s abstract syntax tree can be shared with Flyweight. 

 The pattern doesn‘t address parsing. When the grammar is very complex, other techniques (such 

as a parser) are more appropriate. 



 Dept of CSE 

Object Oriented Analysis and Design 57 

 

 

Iterator Design Pattern 

Intent 

 Provide a way to access the elements of an aggregate object sequentially without exposing its 

underlying representation. 

 The C++ and Java standard library abstraction that makes it possible to decouple collection 

classes and algorithms. 

 Promote to ―full object status‖ the traversal of a collection. 

 Polymorphic traversal 

Problem 

Need to ―abstract‖ the traversal of wildly different data structures so that algorithms can be defined that  

are capable of interfacing with each transparently. 

Discussion 

―An aggregate object such as a list should give you a way to access its elements without exposing its 

internal structure. Moreover, you might want to traverse the list in different ways, depending on what you 

need to accomplish. But you probably don‘t want to bloat the List interface with operations for different 

traversals, even if you could anticipate the ones you‘ll require. You might also need to have more than 

one traversal pending on the same list.‖ And, providing a uniform interface for traversing many types of 

aggregate objects (i.e. polymorphic iteration) might be valuable. 

The Iterator pattern lets you do all this. The key idea is to take the responsibility for access and traversal 

out of the aggregate object and put it into an Iterator object that defines a standard traversal protocol. 

The Iterator abstraction is fundamental to an emerging technology called ―generic programming‖. This 

strategy seeks to explicitly separate the notion of ―algorithm‖ from that of ―data structure‖. The 

motivation is to: promote component-based development, boost productivity, and reduce 

configuration management. 

As an example, if you wanted to support four data structures (array, binary tree, linked list, and hash 

table) and three algorithms (sort, find, and merge), a traditional approach would require four times three 

permutations to develop and maintain. Whereas, a generic programming approach would only require 

four plus three configuration items. 

Structure 

The Client uses the Collection class‘ public interface directly. But access to the Collection‘s elements is 

encapsulated behind the additional level of abstraction called Iterator. Each Collection derived class 

knows which Iterator derived class to create and return. After that, the Client relies on the interface 

defined in the Iterator base class. 
 



 Dept of CSE 

Object Oriented Analysis and Design 58 

 

 

 

Example 

The Iterator provides ways to access elements of an aggregate object sequentially without exposing the 

underlying structure of the object. Files are aggregate objects. In office settings where access to files is 

made through administrative or secretarial staff, the Iterator pattern is demonstrated with the secretary 

acting as the Iterator. Several television comedy skits have been developed around the premise of an 

executive trying to understand the secretary‘s filing system. To the executive, the filing system is 

confusing and illogical, but the secretary is able to access files quickly and efficiently. 

On early television sets, a dial was used to change channels. When channel surfing, the viewer was 

required to move the dial through each channel position, regardless of whether or not that channel had 

reception. On modern television sets, a next and previous button are used. When the viewer selects the 

―next‖ button, the next tuned channel will be displayed. Consider watching television in a hotel room in a 

strange city. When surfing through channels, the channel number is not important, but the programming 

is. If the programming on one channel is not of interest, the viewer can request the next channel, without 

knowing its number. 
 

 

Check list 

1. Add a create_iterator() method to the ―collection‖ class, and grant the ―iterator‖ class 

privileged access. 

2. Design an ―iterator‖ class that can encapsulate traversal of the ―collection‖ class. 

3. Clients ask the collection object to create an iterator object. 

4. Clients use the first(), is_done(), next(), and current_item() protocol to access the elements of the 
collection class. 

Rules of thumb 

 The abstract syntax tree of Interpreter is a Composite (therefore Iterator and Visitor are 

also applicable). 

 Iterator can traverse a Composite. Visitor can apply an operation over a Composite. 

 Polymorphic Iterators rely on Factory Methods to instantiate the appropriate Iterator subclass. 

 Memento is often used in conjunction with Iterator. An Iterator can use a Memento to capture the 

state of an iteration. The Iterator stores the Memento internally. 



 Dept of CSE 

Object Oriented Analysis and Design 59 

 

 

Mediator Design Pattern 

Intent 

 Define an object that encapsulates how a set of objects interact. Mediator promotes loose coupling 

by keeping objects from referring to each other explicitly, and it lets you vary their 

interaction independently. 

 Design an intermediary to decouple many peers. 

 Promote the many-to-many relationships between interacting peers to ―full object status‖. 

Problem 

We want to design reusable components, but dependencies between the potentially reusable pieces 

demonstrates the ―spaghetti code‖ phenomenon (trying to scoop a single serving results in an ―all or 

nothing clump‖). 

Discussion 

In Unix, permission to access system resources is managed at three levels of granularity: world, group, 

and owner. A group is a collection of users intended to model some functional affiliation. Each user on 

the system can be a member of one or more groups, and each group can have zero or more users assigned 

to it. Next figure shows three users that are assigned to all three groups. 
 

 

If we were to model this in software, we could decide to have User objects coupled to Group objects, and 

Group objects coupled to User objects. Then when changes occur, both classes and all their instances 

would be affected. 

An alternate approach would be to introduce ―an additional level of indirection‖ - take the mapping of 

users to groups and groups to users, and make it an abstraction unto itself. This offers several advantages: 

Users and Groups are decoupled from one another, many mappings can easily be maintained and 

manipulated simultaneously, and the mapping abstraction can be extended in the future by defining 

derived classes. 
 



 Dept of CSE 

Object Oriented Analysis and Design 60 

 

 

 

Partitioning a system into many objects generally enhances reusability, but proliferating interconnections 

between those objects tend to reduce it again. The mediator object: encapsulates all interconnections, acts 

as the hub of communication, is responsible for controlling and coordinating the interactions of its clients, 

and promotes loose coupling by keeping objects from referring to each other explicitly. 

The Mediator pattern promotes a ―many-to-many relationship network‖ to ―full object status‖. Modelling 

the inter-relationships with an object enhances encapsulation, and allows the behavior of those inter- 

relationships to be modified or extended through subclassing. 

An example where Mediator is useful is the design of a user and group capability in an operating system. 
A group can have zero or more users, and, a user can be a member of zero or more groups. The Mediator 

pattern provides a flexible and non-invasive way to associate and manage users and groups. 

Structure 
 

 

Colleagues (or peers) are not coupled to one another. Each talks to the Mediator, which in turn knows and 

conducts the orchestration of the others. The ―many to many‖ mapping between colleagues that would 

otherwise exist, has been ―promoted to full object status‖. This new abstraction provides a locus of 

indirection where additional leverage can be hosted. 
 

 

Example 

The Mediator defines an object that controls how a set of objects interact. Loose coupling between 

colleague objects is achieved by having colleagues communicate with the Mediator, rather than with each 

other. The control tower at a controlled airport demonstrates this pattern very well. The pilots of the 

planes approaching or departing the terminal area communicate with the tower rather than explicitly 

communicating with one another. The constraints on who can take off or land are enforced by the tower. 

It is important to note that the tower does not control the whole flight. It exists only to enforce constraints 

in the terminal area. 
 



 Dept of CSE 

Object Oriented Analysis and Design 61 

 

 

 

Check list 

1. Identify a collection of interacting objects that would benefit from mutual decoupling. 

2. Encapsulate those interactions in the abstraction of a new class. 

3. Create an instance of that new class and rework all ―peer‖ objects to interact with the 

Mediator only. 

4. Balance the principle of decoupling with the principle of distributing responsibility evenly. 

5. Be careful not to create a ―controller‖ or ―god‖ object. 

Rules of thumb 

 Chain of Responsibility, Command, Mediator, and Observer, address how you can decouple 

senders and receivers, but with different trade-offs. Chain of Responsibility passes a sender 

request along a chain of potential receivers. Command normally specifies a sender-receiver 

connection with a subclass. Mediator has senders and receivers reference each other indirectly. 

Observer defines a very decoupled interface that allows for multiple receivers to be configured 

at run-time. 

 Mediator and Observer are competing patterns. The difference between them is that Observer 

distributes communication by introducing ―observer‖ and ―subject‖ objects, whereas a Mediator 

object encapsulates the communication between other objects. We‘ve found it easier to make 

reusable Observers and Subjects than to make reusable Mediators. 

 On the other hand, Mediator can leverage Observer for dynamically registering colleagues and 

communicating with them. 

 Mediator is similar to Facade in that it abstracts functionality of existing classes. Mediator 

abstracts/centralizes arbitrary communication between colleague objects, it routinely ―adds 

value‖, and it is known/referenced by the colleague objects (i.e. it defines a multidirectional 

protocol). In contrast, Facade defines a simpler interface to a subsystem, it doesn‘t add new 

functionality, and it is not known by the subsystem classes (i.e. it defines a unidirectional protocol 

where it makes requests of the subsystem classes but not vice versa). 

 

 

Memento Design Pattern 

Intent 

 Without violating encapsulation, capture and externalize an object‘s internal state so that the 

object can be returned to this state later. 

 A magic cookie that encapsulates a ―check point‖ capability. 

 Promote undo or rollback to full object status. 

Problem 

Need to restore an object back to its previous state (e.g. ―undo‖ or ―rollback‖ operations). 

Discussion 

The client requests a Memento from the source object when it needs to checkpoint the source object‘s 

state. The source object initializes the Memento with a characterization of its state. The client is the ―care- 

taker‖ of the Memento, but only the source object can store and retrieve information from the Memento 



 Dept of CSE 

Object Oriented Analysis and Design 62 

 

 

 

(the Memento is ―opaque‖ to the client and all other objects). If the client subsequently needs to 

―rollback‖ the source object‘s state, it hands the Memento back to the source object for reinstatement. 

An unlimited ―undo‖ and ―redo‖ capability can be readily implemented with a stack of Command objects 

and a stack of Memento objects. 

The Memento design pattern defines three distinct roles: 

1. Originator - the object that knows how to save itself. 

2. Caretaker - the object that knows why and when the Originator needs to save and restore itself. 

3. Memento - the lock box that is written and read by the Originator, and shepherded by 

the Caretaker. 

Example 

The Memento captures and externalizes an object‘s internal state so that the object can later be restored to 

that state. This pattern is common among do-it-yourself mechanics repairing drum brakes on their cars. 

The drums are removed from both sides, exposing both the right and left brakes. Only one side is 

disassembled and the other serves as a Memento of how the brake parts fit together. Only after the job has 

been completed on one side is the other side disassembled. When the second side is disassembled, the 

first side acts as the Memento. 

Check list 

1. Identify the roles of ―caretaker‖ and ―originator‖. 

2. Create a Memento class and declare the originator a friend. 

3. Caretaker knows when to ―check point‖ the originator. 

4. Originator creates a Memento and copies its state to that Memento. 

5. Caretaker holds on to (but cannot peek into) the Memento. 

6. Caretaker knows when to ―roll back‖ the originator. 

7. Originator reinstates itself using the saved state in the Memento. 

Rules of thumb 

 Command and Memento act as magic tokens to be passed around and invoked at a later time. In 

Command, the token represents a request; in Memento, it represents the internal state of an object 

at a particular time. Polymorphism is important to Command, but not to Memento because its 

interface is so narrow that a memento can only be passed as a value. 

 Command can use Memento to maintain the state required for an undo operation. 

 Memento is often used in conjunction with Iterator. An Iterator can use a Memento to capture the 

state of an iteration. The Iterator stores the Memento internally. 



 Dept of CSE 

Object Oriented Analysis and Design 63 

 

 

 

Observer Design Pattern 

Intent 

 Define a one-to-many dependency between objects so that when one object changes state, all its 
dependents are notified and updated automatically. 

 Encapsulate the core (or common or engine) components in a Subject abstraction, and the variable 

(or optional or user interface) components in an Observer hierarchy. 

 The ―View‖ part of Model-View-Controller. 

Problem 

A large monolithic design does not scale well as new graphing or monitoring requirements are levied. 

Discussion 

Define an object that is the ―keeper‖ of the data model and/or business logic (the Subject). Delegate all 
―view‖ functionality to decoupled and distinct Observer objects. Observers register themselves with the 

Subject as they are created. Whenever the Subject changes, it broadcasts to all registered Observers that it 

has changed, and each Observer queries the Subject for that subset of the Subject‘s state that it is 

responsible for monitoring. 

This allows the number and ―type‖ of ―view‖ objects to be configured dynamically, instead of being 

statically specified at compile-time. 

The protocol described above specifies a ―pull‖ interaction model. Instead of the Subject ―pushing‖ what 

has changed to all Observers, each Observer is responsible for ―pulling‖ its particular ―window of 

interest‖ from the Subject. The ―push‖ model compromises reuse, while the ―pull‖ model is less efficient. 

Issues that are discussed, but left to the discretion of the designer, include: implementing event 

compression (only sending a single change broadcast after a series of consecutive changes has occurred), 

having a single Observer monitoring multiple Subjects, and ensuring that a Subject notify its Observers 

when it is about to go away. 

The Observer pattern captures the lion‘s share of the Model-View-Controller architecture that has been a 

part of the Smalltalk community for years. 

Structure 
 

 

Subject represents the core (or independent or common or engine) abstraction. Observer represents the 

variable (or dependent or optional or user interface) abstraction. The Subject prompts the Observer 

objects to do their thing. Each Observer can call back to the Subject as needed. 



 Dept of CSE 

Object Oriented Analysis and Design 64 

 

 

 

Example 

The Observer defines a one-to-many relationship so that when one object changes state, the others are 

notified and updated automatically. Some auctions demonstrate this pattern. Each bidder possesses a 

numbered paddle that is used to indicate a bid. The auctioneer starts the bidding, and ―observes‖ when a 

paddle is raised to accept the bid. The acceptance of the bid changes the bid price which is broadcast to 

all of the bidders in the form of a new bid. 
 

 

Check list 

1. Differentiate between the core (or independent) functionality and the optional (or 

dependent) functionality. 

2. Model the independent functionality with a ―subject‖ abstraction. 

3. Model the dependent functionality with an ―observer‖ hierarchy. 

4. The Subject is coupled only to the Observer base class. 

5. The client configures the number and type of Observers. 

6. Observers register themselves with the Subject. 

7. The Subject broadcasts events to all registered Observers. 

8. The Subject may ―push‖ information at the Observers, or, the Observers may ―pull‖ the 

information they need from the Subject. 

Rules of thumb 

 Chain of Responsibility, Command, Mediator, and Observer, address how you can decouple 

senders and receivers, but with different trade-offs. Chain of Responsibility passes a sender 

request along a chain of potential receivers. Command normally specifies a sender-receiver 

connection with a subclass. Mediator has senders and receivers reference each other indirectly. 

Observer defines a very decoupled interface that allows for multiple receivers to be configured 

at run-time. 

 Mediator and Observer are competing patterns. The difference between them is that Observer 

distributes communication by introducing ―observer‖ and ―subject‖ objects, whereas a Mediator 

object encapsulates the communication between other objects. We‘ve found it easier to make 

reusable Observers and Subjects than to make reusable Mediators. 



 Dept of CSE 

Object Oriented Analysis and Design 65 

 

 

 

 On the other hand, Mediator can leverage Observer for dynamically registering colleagues and 
communicating with them. 

 

 

State Design Pattern 

Intent 

 Allow an object to alter its behavior when its internal state changes. The object will appear to 

change its class. 

 An object-oriented state machine 

 wrapper + polymorphic wrappee + collaboration 

Problem 

A monolithic object‘s behavior is a function of its state, and it must change its behavior at run-time 

depending on that state. Or, an application is characterixed by large and numerous case statements that 

vector flow of control based on the state of the application. 

Discussion 

The State pattern is a solution to the problem of how to make behavior depend on state. 

 Define a ―context‖ class to present a single interface to the outside world. 

 Define a State abstract base class. 

 Represent the different ―states‖ of the state machine as derived classes of the State base class. 

 Define state-specific behavior in the appropriate State derived classes. 

 Maintain a pointer to the current ―state‖ in the ―context‖ class. 

 To change the state of the state machine, change the current ―state‖ pointer. 

The State pattern does not specify where the state transitions will be defined. The choices are two: the 

―context‖ object, or each individual State derived class. The advantage of the latter option is ease of 

adding new State derived classes. The disadvantage is each State derived class has knowledge of 

(coupling to) its siblings, which introduces dependencies between subclasses. 

A table-driven approach to designing finite state machines does a good job of specifying state transitions, 

but it is difficult to add actions to accompany the state transitions. The pattern-based approach uses code 

(instead of data structures) to specify state transitions, but it does a good job of accomodating state 

transition actions. 

Structure 

The state machine‘s interface is encapsulated in the ―wrapper‖ class. The wrappee hierarchy‘s interface 

mirrors the wrapper‘s interface with the exception of one additional parameter. The extra parameter 

allows wrappee derived classes to call back to the wrapper class as necessary. Complexity that would 

otherwise drag down the wrapper class is neatly compartmented and encapsulated in a polymorphic 

hierarchy to which the wrapper object delegates. 



 Dept of CSE 

Object Oriented Analysis and Design 66 

 

 

 

 

 

Example 

The State pattern allows an object to change its behavior when its internal state changes. This pattern can 

be observed in a vending machine. Vending machines have states based on the inventory, amount of 

currency deposited, the ability to make change, the item selected, etc. When currency is deposited and a 

selection is made, a vending machine will either deliver a product and no change, deliver a product and 

change, deliver no product due to insufficient currency on deposit, or deliver no product due to 

inventory depletion. 
 

 

Check list 

1. Identify an existing class, or create a new class, that will serve as the ―state machine‖ from the 

client‘s perspective. That class is the ―wrapper‖ class. 

2. Create a State base class that replicates the methods of the state machine interface. Each method 

takes one additional parameter: an instance of the wrapper class. The State base class specifies any 

useful ―default‖ behavior. 

3. Create a State derived class for each domain state. These derived classes only override the 

methods they need to override. 

4. The wrapper class maintains a ―current‖ State object. 

5. All client requests to the wrapper class are simply delegated to the current State object, and the 

wrapper object‘sthis pointer is passed. 

6. The State methods change the ―current‖ state in the wrapper object as appropriate. 

Rules of thumb 

 State objects are often Singletons. 

 Flyweight explains when and how State objects can be shared. 



 Dept of CSE 

Object Oriented Analysis and Design 67 

 

 

 

 Interpreter can use State to define parsing contexts. 

 Strategy has 2 different implementations, the first is similar to State. The difference is in binding 
times (Strategy is a bind-once pattern, whereas State is more dynamic). 

 The structure of State and Bridge are identical (except that Bridge admits hierarchies of envelope 

classes, whereas State allows only one). The two patterns use the same structure to solve different 

problems: State allows an object‘s behavior to change along with its state, while Bridge‘s intent is 

to decouple an abstraction from its implementation so that the two can vary independently. 

 The implementation of the State pattern builds on the Strategy pattern. The difference between 

State and Strategy is in the intent. With Strategy, the choice of algorithm is fairly stable. With 

State, a change in the state of the ―context‖ object causes it to select from its ―palette‖ of 

Strategy objects. 

 

 

Strategy Design Pattern 

Intent 

 Define a family of algorithms, encapsulate each one, and make them interchangeable. Strategy lets 
the algorithm vary independently from the clients that use it. 

 Capture the abstraction in an interface, bury implementation details in derived classes. 

Problem 

One of the dominant strategies of object-oriented design is the ―open-closed principle‖. 

Figure demonstrates how this is routinely achieved - encapsulate interface details in a base class, and bury 

implementation details in derived classes. Clients can then couple themselves to an interface, and not 

have to experience the upheaval associated with change: no impact when the number of derived classes 

changes, and no impact when the implementation of a derived class changes. 
 

 

A generic value of the software community for years has been, ―maximize cohesion and minimize 

coupling‖. The object-oriented design approach shown in figure is all about minimizing coupling. Since 

the client is coupled only to an abstraction (i.e. a useful fiction), and not a particular realization of that 

abstraction, the client could be said to be practicing ―abstract coupling‖ .an object-oriented variant of the 

more generic exhortation ―minimize coupling‖. 

A more popular characterization of this ―abstract coupling‖ principle is ―Program to an interface, not 

an implementation‖. 

Clients should prefer the ―additional level of indirection‖ that an interface (or an abstract base class) 

affords. The interface captures the abstraction (i.e. the ―useful fiction‖) the client wants to exercise, and 

the implementations of that interface are effectively hidden. 



 Dept of CSE 

Object Oriented Analysis and Design 68 

 

 

 

Structure 

The Interface entity could represent either an abstract base class, or the method signature expectations by 

the client. In the former case, the inheritance hierarchy represents dynamic polymorphism. In the latter 

case, the Interface entity represents template code in the client and the inheritance hierarchy represents 

static polymorphism. 
 

 

Example 

A Strategy defines a set of algorithms that can be used interchangeably. Modes of transportation to an 

airport is an example of a Strategy. Several options exist such as driving one‘s own car, taking a taxi, an 

airport shuttle, a city bus, or a limousine service. For some airports, subways and helicopters are also 

available as a mode of transportation to the airport. Any of these modes of transportation will get a 

traveler to the airport, and they can be used interchangeably. The traveler must chose the Strategy based 

on tradeoffs between cost, convenience, and time. 
 

 

Check list 

1. Identify an algorithm (i.e. a behavior) that the client would prefer to access through a ―flex point‖. 

2. Specify the signature for that algorithm in an interface. 

3. Bury the alternative implementation details in derived classes. 

4. Clients of the algorithm couple themselves to the interface. 

Rules of thumb 

 Strategy is like Template Method except in its granularity. 

 State is like Strategy except in its intent. 

 Strategy lets you change the guts of an object. Decorator lets you change the skin. 



 Dept of CSE 

Object Oriented Analysis and Design 69 

 

 

 

 State, Strategy, Bridge (and to some degree Adapter) have similar solution structures. They all 

share elements of the ‗handle/body‘ idiom. They differ in intent - that is, they solve 

different problems. 

 Strategy has 2 different implementations, the first is similar to State. The difference is in binding 
times (Strategy is a bind-once pattern, whereas State is more dynamic). 

 Strategy objects often make good Flyweights. 



 Dept of CSE 

Object Oriented Analysis and Design 70 

 

 

 

Important Questions 

2 Marks 

1. What is a Design Pattern? 

2. What does design pattern provide? 

3. Describe briefly about structural pattern 

4. What is meant by behavioral pattern 

5. What is meant by creational design pattern 

11 Marks 

1. What is Design Pattern? Explain its elements. (Ref.Pg.No 5, Qn.no.1) 

2. Explain briefly Describing Design patterns. (Ref.Pg.No 6, Qn.no.2) 

3. Explain the Catalog of Design patterns. (Ref.Pg.No 7, Qn.no.3) 

4. How to organize the catalog? Explain in detail. (Ref.Pg.No 8, Qn.no.4) 

5. How Design Patterns solve design problems? (Ref.Pg.No 10, Qn.no.5) 

6. How to Select a Design Pattern? (Ref.Pg.No 15, Qn.no.6) 

7. How to Use a Design Pattern? (Ref.Pg.No 16, Qn.no.7) 

8. Explain Design Patterns and its uses. (Ref.Pg.No 17, Qn.no.8) 

9. Explain briefly about Creational Design Patterns with examples. (Ref.Pg.No 20, Qn.no.9) 

10. Explain briefly about Structural Design Pattern with examples. (Ref.Pg.No 30, Qn.no.10) 

11. Explain briefly about Behavioral Design Pattern with examples(Ref.Pg.No 47, Qn.no.11) 

 

 

 

Reference Books: 

1. Ali Bahrami, Object Oriented systems development, Tata Mcgraw Hill Education Private Ltd, 

1999. 

2. Carol Britton and Jill Doake, A student Gide to Object Oriented Development, Elsevier, 

Butterworth – Heinemann, Eighth Edition, 2007. 

3. Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns – elements of 

reusable object oriented software, Addition Wesley, 1994. 

4. Craig Larman,"Applying UML and Patterns: An Introduction to object-oriented Analysis and 
Design and iterative development‖, Third Edition, Pearson Education, 2005 

5. Mike O‘Docherty ―Object-Oriented Analysis & design – understanding system development with 

UML 2.0‖, John Wiley, 2005. 

6. Grady Booch, James Rumbagh, Ivar Jacobson, ―The UML user Guide‖, Pearson Education, 2005 

7. Timothy C. Lethbridge, Robert Laganiere― Object-Oriented Software Engineering – A practical 

software development using UML and Java‖, Tata McGraw-Hill, New Delhi, March 2003. 

8. David William Brown, ―An Introduction to Object Oriented Analysis Objects and UML in Plain 

English‖, 2nd Edition, Wiley, 2001. 

http://sourcemaking.com/creational_patterns

	5. Briefly discuss about the scope criteria in design patterns.
	6. What is meant by abstract class?
	7. What is meant by delegation?
	8. Define toolkit.
	9. Define framework
	10. What is meant by creational design pattern
	11. Describe Abstract Factory
	12. Define Adapter
	13. Define Chain of Responsibility
	14. Discuss the consequences of abstract factory pattern
	15. When to use abstract factory pattern
	16. Describe briefly about structural patterns
	17. What is meant by behavioral patterns
	18. What are the benefits of chain of responsibility
	19. What is the disadvantage of chain of responsibility
	20. How will you Select a Design Pattern
	21. How to Use a Design Pattern
	22. What are the different techniques used for implementing abstract factory pattern
	23. When can the adapter pattern be used
	24. What is a class adapter
	25. What is an object adapter
	26. What are the issues in implementing adapter.
	27. What are the implementation approaches of narrow interface
	28. When to Use Chain of Responsibility
	29. What are the implementation issues in Chain of Responsibility
	30. What is meant by Pluggable adapters.
	11 Marks
	2. Explain briefly Describing Design patterns.
	Pattern Name and Classification
	Also Known As
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	3. Explain the Catalog of Design patterns.
	5. How Design Patterns solve design problems?
	2. Determining Object Granularity
	3. Specifying Object Interfaces
	4. Specifying Object Implementations
	Class versus Interface Inheritance
	Programming to an Interface, not an Implementation

	5. Putting Reuse Mechanisms to Work
	Inheritance versus Composition
	Favor object composition over class inheritance.

	6. Relating Run-Time and Compile-Time Structures
	• Aggregation
	• Acquaintance

	7. Designing for Change
	• Application Programs
	• Toolkits (class/component libraries)

	6. How to Select a Design Pattern?
	1. Consider how design patterns solve design problems.
	2. Scan Intent sections.
	3. Study how patterns interrelate.
	4. Study patterns of like purpose.
	5. Examine a cause of redesign.
	6. Consider what should be variable in your design.

	7. How to Use a Design Pattern?
	1. Read the pattern once through for an overview.
	2. Go back and study the Structure, Participants, and Collaborations sections.
	3. Look at the Sample Code section to see a concrete example of the patternin code.
	4. Choose names for pattern participants that are meaningful in the application context.
	5. Define the classes.
	6. Define application-specific names for operations in the pattern.
	7. Implement the operations to carry out the responsibilities and collaborations in the pattern.

	8. Explain Design Patterns and its uses.
	Uses of Design Patterns
	9. Explain briefly about Creational Design Patterns with examples. Abstract Factory Design Pattern
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb
	Builder Design Pattern Intent
	Problem (1)
	Discussion (1)
	Structure (1)
	Example (1)
	Check list (1)
	Rules of thumb (1)
	Factory Method Design Pattern Intent
	Problem (2)
	Discussion (2)
	Structure (2)
	Example (2)
	Check list (2)
	Rules of thumb (2)
	Prototype Design Pattern Intent
	Problem (3)
	Discussion (3)
	Structure (3)
	Example (3)
	Check list (3)
	Rules of thumb (3)
	Singleton Design Pattern Intent
	Problem (4)
	Discussion (4)
	Structure (4)
	Example (4)
	Check list (4)
	Rules of thumb (4)
	10. Explain briefly about Structural Design Pattern with examples. Adapter Design Pattern
	Problem (5)
	Discussion (5)
	Structure (5)
	Example (5)
	Check list (5)
	Bridge Design Pattern Intent
	Problem (6)
	Motivation
	Discussion (6)
	Structure (6)
	Example (6)
	Check list (6)
	Decorator Design Pattern Intent
	Problem (7)
	Discussion (7)
	Structure (7)
	Example (7)
	Check list (7)
	Composite Design Pattern Intent
	Problem (8)
	Discussion (8)
	Structure (8)
	Check list (8)
	Rules of thumb (5)
	Opinions
	Facade Design Pattern Intent
	Problem (9)
	Discussion (9)
	Structure (9)
	Example (8)
	Check list (9)
	Rules of thumb (6)
	Flyweight Design Pattern Intent
	Problem (10)
	Discussion (10)
	Structure (10)
	Example (9)
	Check list (10)
	Rules of thumb (7)
	Private Class Data Intent
	Problem (11)
	Discussion (11)
	Structure (11)
	Check list (11)
	Proxy Design Pattern Intent
	Problem (12)
	Discussion (12)
	Structure (12)
	Example (10)
	Check list (12)
	Rules of thumb (8)
	11. Explain briefly Behavioral Design Pattern with examples
	Problem (13)
	Discussion (13)
	Structure (13)
	Example (11)
	Check list (13)
	Rules of thumb (9)
	Chain of Responsibility Intent
	Problem (14)
	Discussion (14)
	Structure (14)
	Example (12)
	Check list (14)
	Rules of thumb (10)
	Command Design Pattern Intent
	Problem (15)
	Discussion (15)
	Structure (15)
	Example (13)
	Check list (15)
	Rules of thumb (11)
	Interpreter Design Pattern Intent
	Problem (16)
	Discussion (16)
	Structure (16)
	Example (14)
	Check list (16)
	Rules of thumb (12)
	Iterator Design Pattern Intent
	Problem (17)
	Discussion (17)
	Structure (17)
	Example (15)
	Check list (17)
	Rules of thumb (13)
	Mediator Design Pattern Intent
	Problem (18)
	Discussion (18)
	Structure (18)
	Example (16)
	Check list (18)
	Rules of thumb (14)
	Memento Design Pattern Intent
	Problem (19)
	Discussion (19)
	Example (17)
	Check list (19)
	Rules of thumb (15)
	Observer Design Pattern Intent
	Problem (20)
	Discussion (20)
	Structure (19)
	Example (18)
	Check list (20)
	Rules of thumb (16)
	State Design Pattern Intent
	Problem (21)
	Discussion (21)
	Structure (20)
	Example (19)
	Check list (21)
	Rules of thumb (17)
	Strategy Design Pattern Intent
	Problem (22)
	Structure (21)
	Example (20)
	Check list (22)
	Rules of thumb (18)
	Important Questions
	11 Marks (1)
	Reference Books:

